Skip to main content

Collaborative Engagement Through Mobile Technology in Mathematics Learning

  • Chapter
  • First Online:
Using Mobile Technologies in the Teaching and Learning of Mathematics

Part of the book series: Mathematics Education in the Digital Era ((MEDE,volume 12))

Abstract

When a group of students come together to engage in negotiation about mathematical ideas and activities, they draw on each other’s cultural experiences for a shared understanding of mathematical meanings. This chapter considers how mobile technologies, along with children’s collaborative engagements, can enhance mathematical learning. We adapted previous findings regarding touchscreen -based interactions to assess and analyse how mathematical learning occurs when learners interact with mobile technologies and with their peers. We also utilized StudioCode software to analyse children’s interactions with a mathematical tool in order to better understand their collaborative practices and how they reflect using touchscreen -based devices. Our conclusions emerge from children's use of an iPad application called TouchCounts, which aims to develop number sense . Overall, we found that the one-to-one multimodal touch, sight, and auditory feedback via a touchscreen mobile device served to assist children’s collaborative engagement and helped children develop their number sense .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://touchcounts.ca/.

  2. 2.

    Suppose x is the greatest natural number, then there is x + 1 that x + 1 > x (proof by contradiction).

References

  • Ainley, M., & Ainley, J. (2011). Student engagement with science in early adolescence: The contribution of enjoyment to students’ continuing interest in learning about science. Contemporary Educational Psychology, 36(1), 4–12.

    Google Scholar 

  • Arzarello, F., Bairral, M. A., & Danè, C. (2014). Moving from dragging to touchscreen: Geometrical learning with geometric dynamic software. Teaching mathematics and its applications, 33(1), 39–51.

    Google Scholar 

  • Calder, N. S. (2005). “I type what I think and try it”: Children’s initial approaches to investigate through spreadsheets. In P. Clarkson, A. Downton, D. Gronn, M. Horne, A. McDonough, R. Pierce & A. Roche (Eds.), Building Connections: Theory, Research and Practice, (Proceedings of the 28th Annual Conference of the Mathematics Education Research Group of Australasia) (pp. 185–192). Melbourne, Sydney: MERGA.

    Google Scholar 

  • Clements, D. H. (2000). From exercises and tasks to problems and projects: Unique contributions of computers to innovative mathematics education. Journal of Mathematical behavior, 19, 9–47.

    Google Scholar 

  • Clements, D. H., Sarama, J., Yelland, N. J., & Glass, B. (2008). Learning and teaching geometry with computers in the elementary and middle school. In M. K. Heid & G. Blume (Eds.), Research on technology and the teaching learning of mathematics: Research syntheses (Vol. 1, pp. 109–159). Greenwich, CT: Information Age.

    Google Scholar 

  • Cochrane, T., & Bateman, R. (2010). Smartphones give you wings: Pedagogical affordances of mobile web 2.0. Australasian Journal of Educational Technology, 26(1), 1–14.

    Google Scholar 

  • Dewey, J. (1916). Democracy and education. MacMillan, New York.

    Google Scholar 

  • Donato, R. (2004). Aspects of collaboration in pedagogical discourse. In M. McGroarty (Ed.), Annual review of applied linguistics: Advances in language pedagogy (pp. 284–302). West Nyack, NY: Cambridge University Press.

    Google Scholar 

  • Drijvers, P., Mariotti, M. A., Olive, J., & Sacristán, A. I. (2010). Introduction to section two. In C. Hoyles & J.-B. Lagrange (Eds.), Mathematics education and technology-rethinking the terrain: The 17th ICMI study (Online).

    Google Scholar 

  • Fredricks, J. A., Blumenfield, P. C., & Paris, A. H. (2004). School engagement: potential of the concept, state of the evidence. Review of Educational Research 74(1), 59–109.

    Google Scholar 

  • Gadanidis, G., & Geiger, V. (2010). A social perspective on technology enhanced mathematical learning—From collaboration to performance. ZDM, 42(1), 91–104.

    Google Scholar 

  • Gee, J. P. (2003). What video games have to teach us about learning and literacy. ACM Computers in Entertainment, 1(1). New York: Palgrave McMillon.

    Google Scholar 

  • Gibson, J. J. (1977). The theory of affordance. In R. Shaw & J. Bransford (Eds.), Perceiving, acting and knowing perceiving, acting, and knowing: Toward an ecological psychology (pp. 67–82). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Harper, S. R., & Quaye, S. J. (Ed.) (2009). Student engagement in higher education. New York and London: Routledge.

    Google Scholar 

  • Hilda, K., Kabali, M. D., Matilde, M., Irigoyen, M. D., Nunez-Davis, R., Jennifer, G., et al. (2015). Exposure and use of mobile media devices by young children. Pediatrics, 136(6), 1044–1050. https://doi.org/10.1542/peds.2015-2151.

  • Hoyles, C., & Lagrange J. B. (Ed.), (2010). Mathematics education and technology—Rethinking the terrain: The 17th ICMI study 13, 81–88. USA: Springer.

    Google Scholar 

  • Hollerbands, K., Laborde, C., & Strasser, R. (2008). Technology and the learning of geometry at the secondary level. In M. K .Heid & G. Blume (Eds.), Research on technology and the teaching learning of mathematics: Research syntheses (Vol. 1, pp. 109–159). Greenwich, CT: Information Age.

    Google Scholar 

  • Hu, S., & Kuh, G. D. (2001). Being (Dis) Engaged in educationally purposeful activities: the influences of student and institutional characteristics. In Paper Presented at the American Educational Research Association Annual Conference (pp. 10–14). Seattle, WA.

    Google Scholar 

  • Jackiw, N., & Sinclair, N. (2014). TouchCounts. Application for the iPad. Burnaby, BC: Tangible Mathematics Project.

    Google Scholar 

  • Laborde, C., Kynigos, C., Hollebrands, K., & Strasser, R. (2006). Teaching and learning geometry with technology. In A. Gutierrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education: Past present and future. (pp. 275–304). Rotterdam: Sense Publishers.

    Google Scholar 

  • Lai, C. H., Yang, J. C., Chen, F. C., Ho, C. W., Liang, J. S. & Chan, T. W. (2007). Affordances of mobile technologies for experiential learning: interplay of technology and pedagogical practices. Journal of Computer Assisted Learning, 23(4), 326–337.

    Google Scholar 

  • Lave, J., Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge: Cambridge University Press.

    Google Scholar 

  • Moyer-Packenham, P. S., Bullock, E. K., Shumway, J. F., Tucker, S. I., Watts, C. M., Westenskow, A., … Jordan, K. (2016). The role of affordances in children’s learning performance and efficiency when using virtual manipulative mathematics touch-screen apps. Mathematics Education Research Journal, 28(1), 79–105. http://doi.org/10.1007/s13394-015-0161-z.

  • Newman, F. W, Wehalage, G. G., & Lamborn, S. D. (1992). The significance and sources of student engagement. New York, NY: Teachers college press.

    Google Scholar 

  • Noss, R. & Hoyles, C. (1996). Windows on mathematical meanings: Learning cultures and computers. In Mathematics education library (Vol. 17). Boston, London: Kluwer Academic publisher.

    Google Scholar 

  • Papert, S. (1980). Mindstorms: Children, computers and powerful ideas. New York (NY): Basic Books.

    Google Scholar 

  • Petrovsky, A. V. (1985). The collective and the individual. Moscow: Progress.

    Google Scholar 

  • Pierce, R., & Stacey, K. (2010). Mapping pedagogical opportunities provided by mathematics analysis software. International Journal of Computers for Mathematical Learning, 15(1), 1–20.

    Google Scholar 

  • Rodgers, C. (2002). Defining reflection: Another look at John Dewey and reflective thinking. Teachers College Columbia University, 104(4), 842–866.

    Google Scholar 

  • Sacristan, A., & Noss, R. (2008). Computational construction as a means to coordinate representations of infinity. International Journal of Computers for Mathematical Learning, 13(1), 47–70. https://doi.org/10.1007/s10758-008-9127-5.

  • Sacristan, A. I., Calder, N., Teresa, R., Santos-Trigo, M., Friedlander, A., Hartwig, M., … Perrusquia, E. (2010). The influence of shaping of digital technologies on the learning—and learning trajectories—of mathematical concepts. In C. Hoyles, & J.-B. Lagrange (Eds.), Mathematics education and technology—Rethinking the terrain (Vol. 13, pp. 179–226). New York, NY: Springer.

    Google Scholar 

  • Schön, D. A. (1983). The reflective practitioner: How professionals think in action. New York (NY): Basic Books.

    Google Scholar 

  • Sedaghatjou, M., & Campbell, S. R. (2017). Exploring cardinality in the era of touchscreen-based technology. Journal of Mathematical Education in Science and Technology (Online). http://dx.doi.org/10.1080/0020739X.2017.1327089.

  • Sinclair, N., Chorney, S., & Rodney, S. (2016). Rhythm in number: exploring the affective, social and mathematical dimensions of using TouchCounts. Mathematics Education Research Journal, 28(1), 31–51. https://doi.org/10.1007/s13394-015-0154-y.

  • Sinclair, N., & Heyd-Metzuyanim, E. (2014). Learning number with TouchCounts: The role of emotions and the body in mathematical communication. Tech Know Learn, 19(1), 81–99. https://doi.org/10.1007/s10758-014-9212-x.

  • Sinclair, N., Arzarello, F. (2010). Implementing digital technologies at a national scale. In C. Hoyles & J.-B. Lagrange (Eds.), Mathematics education and technology—Rethinking the terrain (pp. 61–78). New York, NY: Springer.

    Google Scholar 

  • Sinclair, N. (2005). Mathematics on the internet. In S. Johnston-Wilder & D. Pimm (Eds.), Teaching secondary mathematics with ICT (pp. 203–216). Berkshire, UK: Open University Press.

    Google Scholar 

  • Stone, D., Jarrett C., Woodroffe M., & Minocha, S. (2005). User Interface Design and Evaluation. San Francisco, Elsevier: Morgan Kaufmann Publisher Inc.

    Google Scholar 

  • Vogel, R., & Jung, J. (2013). Video coding—A methodological research approach to mathematical activities of kindergarten children. In Proceedings of the Eighth Congress of the European Society for Research in Mathematics Education in Antalya (pp. 6–10). Turkey, Ankara.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Sedaghatjou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sedaghatjou, M., Rodney, S. (2018). Collaborative Engagement Through Mobile Technology in Mathematics Learning. In: Calder, N., Larkin, K., Sinclair, N. (eds) Using Mobile Technologies in the Teaching and Learning of Mathematics. Mathematics Education in the Digital Era, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-90179-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90179-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90178-7

  • Online ISBN: 978-3-319-90179-4

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics