Skip to main content

A Better Story: An Embodied-Design Argument for Generic Manipulatives

  • Chapter
  • First Online:
Book cover Using Mobile Technologies in the Teaching and Learning of Mathematics

Part of the book series: Mathematics Education in the Digital Era ((MEDE,volume 12))

Abstract

Mathematics education practitioners and researchers have long debated best pedagogical practices for introducing to students new concepts. We report on results from analyzing the behaviors of 25 Grade 4–6 students who participated individually in tutorial activities designed to compare the pedagogical effect of manipulating objects that are either generic (non-representational, not signifying specific contexts, e.g., a circle) or situated (representational, signifying specific contexts, e.g., a hot-air balloon). The situated objects gave rise to richer stories than the generic objects, presumably because the students could bring to bear their everyday knowledge of these objects’ properties, scenarios, and typical behaviors. However, in so doing, the students treated the objects’ only as framed by those particular stories rather than considering other possible interpretations. Consequently, these students did not experience key struggles and insights that the designers believe to be pivotal to their conceptual development in this particular content (proportionality). Drawing on enactivist theory, we analyze several case studies qualitatively to explicate how rich situativity filters out critical opportunities for conceptually pivotal sensorimotor engagement . We caution that designers and teachers should be aware of the double-edged sword of rich situativity: Familiar objects are perhaps more engaging but can also limit the scope of learning. We advocate for our instructional methodology of entering mathematical concepts through the action level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamson, D. (2004). Embodied spatial articulation: A gesture perspective on student negotiation between kinesthetic schemas and epistemic forms in learning mathematics. In D. E. McDougall & J. A. Ross (Eds.), Proceedings of the Twenty Sixth Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 791–797). Toronto, Ontario: Preney.

    Google Scholar 

  • Abrahamson, D. (2006). What’s a situation in situated cognition? (Symposium). In S. Barab, K. Hay, & D. Hickey (Eds.), Proceedings of the 7th International Conference of the Learning Sciences (Vol. 2, pp. 1015–1021). Bloomington, IN: ICLS.

    Google Scholar 

  • Abrahamson, D. (2009). Embodied design: Constructing means for constructing meaning. Educational Studies in Mathematics, 70(1), 27–47.

    Article  Google Scholar 

  • Abrahamson, D. (2014). Building educational activities for understanding: An elaboration on the embodied-design framework and its epistemic grounds. International Journal of Child-Computer Interaction, 2(1), 1–16.

    Article  Google Scholar 

  • Abrahamson, D. (2015). The monster in the machine, or why educational technology needs embodied design. In V. R. Lee (Ed.), Learning technologies and the body: Integration and implementation (pp. 21–38). New York: Routledge.

    Google Scholar 

  • Abrahamson, D., & Bakker, A. (2016). Making sense of movement in embodied design for mathematics learning. In N. Newcombe & S. Weisberg (Eds.), Embodied cognition and STEM learning [Special issue]. Cognitive Research: Principles and Implications, 1(1), 1–13. https://doi.org/10.1186/s41235-016-0034-3.

  • Abrahamson, D., & Kapur, M. (2018). Reinventing discovery learning: A field-wide research program. In D. Abrahamson & M. Kapur (Eds.), Practicing discovery-based learning: Evaluating new horizons [Special issue]. Instructional Science, 46(1), 1–10.

    Google Scholar 

  • Abrahamson, D., Lee, R. G., Negrete, A. G., & Gutiérrez, J. F. (2014). Coordinating visualizations of polysemous action: Values added for grounding proportion. ZDM Mathematics Education, 46(1), 79–93.

    Article  Google Scholar 

  • Abrahamson, D., & Lindgren, R. (2014). Embodiment and embodied design. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Abrahamson, D., & Sánchez-García, R. (2016). Learning is moving in new ways: The ecological dynamics of mathematics education. Journal of the Learning Sciences, 25(2), 203–239.

    Article  Google Scholar 

  • Abrahamson, D., Shayan, S., Bakker, A., & van der Schaaf, M. (2016). Eye-tracking Piaget: Capturing the emergence of attentional anchors in the coordination of proportional motor action. Human Development, 58(4–5), 218–244.

    Google Scholar 

  • Allen, J. W. P., & Bickhard, M. H. (2013). Stepping off the pendulum: Why only an action-based approach can transcend the nativist-empiricist debate. Cognitive Development, 28(2), 96–133.

    Article  Google Scholar 

  • Araújo, D., & Davids, K. (2004). Embodied cognition and emergent decision-making in dynamical movement systems. Junctures: The Journal for Thematic Dialogue, 2, 45–57.

    Google Scholar 

  • Arsalidou, M., & Pascual-Leone, J. (2016). Constructivist developmental theory is needed in developmental neuroscience. Npj Science of Learning, 1, 16016.

    Article  Google Scholar 

  • Barab, S., Zuiker, S., Warren, S., Hickey, D., Ingram-Goble, A., Kwon, E. J., et al. (2007). Situationally embodied curriculum. Science Education, 91, 750–782.

    Article  Google Scholar 

  • Barsalou, L. W. (2010). Grounded cognition: Past, present, and future. Topics in Cognitive Science, 2(4), 716–724.

    Article  Google Scholar 

  • Bartolini Bussi, M. G., & Mariotti, M. A. (2008). Semiotic mediation in the mathematics classroom: Artefacts and signs after a Vygotskian perspective. In L. D. English, M. G. Bartolini Bussi, G. A. Jones, R. Lesh, & D. Tirosh (Eds.), Handbook of international research in mathematics education, 2nd revised edition (pp. 720–749). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Bruner, J. (1986). Actual minds, possible worlds. Cambridge: Harvard University Press.

    Google Scholar 

  • Burton, L. (1999). The implications of a narrative approach to the learning of mathematics. In L. Burton (Ed.), Learning mathematics: From hierarchies to networks (pp. 21–35). London: Falmer Press.

    Google Scholar 

  • Campbell, S. R. (2003). Reconnecting mind and world: Enacting a (new) way of life. In S. J. Lamon, W. A. Parker, & S. K. Houston (Eds.), Mathematical modeling: A way of life (pp. 245–256). Chichester, UK: Horwood Publishing.

    Google Scholar 

  • Chemero, A. (2009). Radical embodied cognitive science. Cambridge, MA: MIT Press.

    Google Scholar 

  • Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36, 181–253.

    Article  Google Scholar 

  • Day, S. B., Motz, B. A., & Goldstone, R. L. (2015). The cognitive costs of context: The effects of concreteness and immersiveness in instructional examples. Frontiers in Psychology6.

    Google Scholar 

  • de Freitas, E., & Sinclair, N. (2012). Diagram, gesture, agency: Theorizing embodiment in the mathematics classroom. Educational Studies in Mathematics, 80(1–2), 133–152.

    Google Scholar 

  • Duijzer, A. C. G., Shayan, S., Bakker, A., Van der Schaaf, M. F., & Abrahamson, D. (2017). Touchscreen tablets: Coordinating action and perception for mathematical cognition. Frontiers in Psychology, 8(144).

    Google Scholar 

  • Fillmore, C. J. (1968). The case for case. In E. Bach & R. Harms (Eds.), Universals in linguistic theory (pp. 1–88). New York, NY: Holt Rinehart and Winston.

    Google Scholar 

  • Fillmore, C. J., & Atkins, B. T. (1992). Toward a frame-based lexicon: The semantics of RISK and its neighbors. In A. Lehrer & E. Kittay (Eds.), Frames, fields, and contrasts (pp. 75–102). Hillsdale, NJ: LEA.

    Google Scholar 

  • Fuson, K. C., & Abrahamson, D. (2005). Understanding ratio and proportion as an example of the apprehending zone and conceptual-phase problem-solving models. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 213–234). New York: Psychology Press.

    Google Scholar 

  • Gibson, J. J. (1977). The theory of affordances. In R. Shaw & J. Bransford (Eds.), Perceiving, acting and knowing: Toward an ecological psychology (pp. 67–82). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Goldstone, R. L., Landy, D., & Son, J. Y. (2008). A well-grounded education. In M. DeVega, A. M. Glenberg, & A. C. Graesser (Eds.), Symbols and embodiment (pp. 327–355). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Goldstone, R. L., & Sakamoto, Y. (2003). The transfer of abstract principles governing complex adaptive systems. Cognitive Psychology, 46, 414–466.

    Article  Google Scholar 

  • Goldstone, R. L., & Son, J. Y. (2005). The transfer of scientific principles using concrete and idealized simulations. Journal of the Learning Sciences, 14, 69–110.

    Article  Google Scholar 

  • Gravemeijer, K. P. E. (1999). How emergent models may foster the constitution of formal mathematics. Mathematical Thinking and Learning, 1(2), 155–177.

    Article  Google Scholar 

  • Gray, E., & Tall, D. (1994). Duality, ambiguity, and flexibility: A “proceptual” view of simple arithmetic. Journal for Research in Mathematics Education, 25(2), 116–140.

    Article  Google Scholar 

  • Greeno, J. G. (1994). Gibson’s affordances. Psychological Review, 101(2), 336–342.

    Article  Google Scholar 

  • Healy, L., & Sinclair, N. (2007). If this is our mathematics, what are our stories? International Journal of Computers for Mathematical Learning, 12(1), 3–21.

    Article  Google Scholar 

  • Howison, M., Trninic, D., Reinholz, D., & Abrahamson, D. (2011). The mathematical imagery trainer: From embodied interaction to conceptual learning. In G. Fitzpatrick, C. Gutwin, B. Begole, W. A. Kellogg, & D. Tan (Eds.), Proceedings of the annual meeting of The Association for Computer Machinery Special Interest Group on Computer Human Interaction: “Human Factors in Computing Systems” (CHI 2011) (Vol. “Full Papers,” pp. 1989–1998). New York: ACM Press.

    Google Scholar 

  • Hutto, D. D., Kirchhoff, M. D., & Abrahamson, D. (2015). The enactive roots of STEM: Rethinking educational design in mathematics. In P. Chandler & A. Tricot (Eds.), Human movement, physical and mental health, and learning [Special issue]. Educational Psychology Review, 27(3), 371–389.

    Google Scholar 

  • Hutto, D. D., & Sánchez-García, R. (2015). Choking RECtified: Embodied expertise beyond Dreyfus. Phenomenology and the Cognitive Sciences, 14(2), 309–331.

    Article  Google Scholar 

  • Kaminski, J. A., Sloutsky, V. M., & Heckler, A. F. (2008). The advantage of abstract examples in learning math. Science, 320, 454–455.

    Article  Google Scholar 

  • Kelso, J. A. S., & Engstrøm, D. A. (2006). The complementary nature. Cambridge, MA: M.I.T. Press.

    Google Scholar 

  • Kim, M., Roth, W.-M., & Thom, J. S. (2011). Children’s gestures and the embodied knowledge of geometry. International Journal of Science and Mathematics Education, 9(1), 207–238.

    Article  Google Scholar 

  • Kirsh, D. (2013). Embodied cognition and the magical future of interaction design. In P. Marshall, A. N. Antle, E. V.D. Hoven, & Y. Rogers (Eds.), The theory and practice of embodied interaction in HCI and interaction design [Special issue]. ACM Transactions on Human–Computer Interaction, vol. 20, no. 1, 3, pp. 1–30.

    Google Scholar 

  • Landy, D., & Goldstone, R. L. (2007). How abstract is symbolic thought? Journal of Experimental Psychology. Learning, Memory, and Cognition, 33(4), 720–733.

    Article  Google Scholar 

  • Lindgren, R., & Johnson-Glenberg, M. (2013). Emboldened by embodiment: Six precepts for research on embodied learning and mixed reality. Educational Researcher, 42, 445–452.

    Article  Google Scholar 

  • Mariotti, M. A. (2009). Artifacts and signs after a Vygotskian perspective: The role of the teacher. ZDM—The international Journal on Mathematics Education, 41, 427–440.

    Google Scholar 

  • McNeil, N. M., Uttal, D. H., Jarvin, L., & Sternberg, R. J. (2009). Should you show me the money? Concrete objects both hurt and help performance on mathematics problems. Learning and Instruction, 19, 171–184.

    Article  Google Scholar 

  • Nathan, M. J. (2012). Rethinking formalisms in formal education. Educational Psychologist, 47(2), 125–148.

    Article  Google Scholar 

  • Negrete, A. G., Lee, R. G., & Abrahamson, D. (2013). Facilitating discovery learning in the tablet era: rethinking activity sequences vis-à-vis digital practices. In M. Martinez & A. Castro Superfine (Eds.), “Broadening Perspectives on Mathematics Thinking and Learning”—Proceedings of the 35th Annual Meeting of the North-American Chapter of the International Group for the Psychology of Mathematics Education (PME-NA 35) (Vol. 10: “Technology” p. 1205). Chicago, IL: University of Illinois at Chicago.

    Google Scholar 

  • Nemirovsky, R. (2003). Three conjectures concerning the relationship between body activity and understanding mathematics. In N. A. Pateman, B. J. Dougherty, & J. T. Zilliox (Eds.), Proceedings of the 27th Annual Meeting of the Int. Group for the Psychology of Mathematics Education (Vol. 1, pp. 105–109). Columbus, OH: Eric Clearinghouse for Science, Mathematics, and Environmental Education.

    Google Scholar 

  • Nemirovsky, R., Kelton, M. L., & Rhodehamel, B. (2013). Playing mathematical instruments: Emerging perceptuomotor integration with an interactive mathematics exhibit. Journal for Research in Mathematics Education, 44(2), 372–415.

    Article  Google Scholar 

  • Newman, D., Griffin, P., & Cole, M. (1989). The construction zone: Working for cognitive change in school. New York: Cambridge University Press.

    Google Scholar 

  • Noss, R., & Hoyles, C. (1996). Windows on mathematical meanings: Learning cultures and computers. Dordrecht: Kluwer.

    Book  Google Scholar 

  • Ottmar, E., & Landy, D. (2017). Concreteness fading of algebraic instruction: Effects on learning. Journal of the Learning Sciences, 26(1), 51–78.

    Article  Google Scholar 

  • Palatnik, A., & Abrahamson, D. (2017). Taking measures to coordinate movements: Unitizing emerges as a method of building event structures for enacting proportion. In E. Galindo & J. Newton (Eds.), “Synergy at the crossroads”—Proceedings of the 39th Annual Conference of the North-American Chapter of the International Group for the Psychology of Mathematics Education (Vol. 13 [Theory and research methods], pp. 1439–1442). Indianapolis, IN: Hoosier Association of Mathematics Teacher Educators.

    Google Scholar 

  • Palatnik, A., & Abrahamson, D. (under review). Rhythmic movement as a tacit enactment goal mobilizing the emergence of mathematical structures. Educational Studies in Mathematics.

    Google Scholar 

  • Piaget, J. (1968). Genetic epistemology (E. Duckworth, Trans.). New York: Columbia University Press.

    Google Scholar 

  • Radford, L. (2003). Gestures, speech, and the sprouting of signs: A semiotic-cultural approach to students’ types of generalization. Mathematical Thinking and Learning, 5(1), 37–70.

    Article  Google Scholar 

  • Sarama, J., & Clements, D. H. (2009). “Concrete” computer manipulatives in mathematics education. Child Development Perspectives, 3(3), 145–150.

    Article  Google Scholar 

  • Sfard, A. (2002). The interplay of intimations and implementations: Generating new discourse with new symbolic tools. Journal of the Learning Sciences, 11(2, 3), 319–357.

    Article  Google Scholar 

  • Sloutsky, V. M., Kaminski, J. A., & Heckler, A. F. (2005). The advantage of simple symbols for learning and transfer. Psychonomic Bulletin and Review, 12(3), 508–513.

    Article  Google Scholar 

  • Steffe, L. P., & Kieren, T. (1994). Radical constructivism and mathematics education. Journal for Research in Mathematics Education, 25(6), 711–733.

    Article  Google Scholar 

  • Stokes, D. E. (1997). Pasteur’s quadrant: Basic science and technological innovation. DC: Brookings.

    Google Scholar 

  • Tahta, D. (1998). Counting counts. Mathematics Teaching, 163, 4–11.

    Google Scholar 

  • Thompson, P. W. (2013). In the absence of meaning …. In K. Leatham (Ed.), Vital directions for mathematics education research (pp. 57–94). New York: Springer.

    Chapter  Google Scholar 

  • Uttal, D. H., Scudder, K. V., & DeLoache, J. S. (1997). Manipulatives as symbols: A new perspective on the use of concrete objects to teach mathematics. Journal of Applied Developmental Psychology, 18, 37–54.

    Article  Google Scholar 

  • Varela, F. J. (1999). Ethical know-how: Action, wisdom, and cognition. Stanford, CA: Stanford University Press.

    Google Scholar 

  • Varela, F. J., Thompson, E., & Rosch, E. (1991). The embodied mind. Cambridge, MA: M.I.T. Press.

    Google Scholar 

  • Vérillon, P., & Rabardel, P. (1995). Cognition and artifacts: A contribution to the study of thought in relation to instrumented activity. European Journal of Psychology of Education, 10(1), 77–101.

    Article  Google Scholar 

  • von Glasersfeld, E. (1983). Learning as constructive activity. In J. C. Bergeron & N. Herscovics (Eds.), Proceedings of the 5th Annual Meeting of the North American Group for the Psychology of Mathematics Education (Vol. 1, pp. 41–69). Montreal: PME-NA.

    Google Scholar 

  • Vygotsky, L. S. (1997). Educational psychology (R. H. Silverman, Trans.). Boca Raton, FL: CRC Press LLC (Work originally published in 1926).

    Google Scholar 

  • Wilensky, U. (1991). Abstract meditations on the concrete and concrete implications for mathematics education. In I. Harel & S. Papert (Eds.), Constructionism (pp. 193–204). Norwood, NJ: Ablex Publishing Corporation.

    Google Scholar 

  • Worsley, M., Abrahamson, D., Blikstein, P., Bumbacher, E., Grover, S., Schneider, B., et al. (2016). Workshop: Situating multimodal learning analytics. In C.-K. Looi, J. L. Polman, U. Cress, & P. Reimann (Eds.), “Transforming learning, empowering learners,” Proceedings of the International Conference of the Learning Sciences (ICLS 2016) (Vol. 2, pp. 1346–1349). Singapore: International Society of the Learning Sciences.

    Google Scholar 

Download references

Acknowledgements

The research reported herein as well the writing of this chapter were supported by an REU (Rosen) under NSF IIS Cyberlearning EXP award 1321042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dor Abrahamson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rosen, D., Palatnik, A., Abrahamson, D. (2018). A Better Story: An Embodied-Design Argument for Generic Manipulatives. In: Calder, N., Larkin, K., Sinclair, N. (eds) Using Mobile Technologies in the Teaching and Learning of Mathematics. Mathematics Education in the Digital Era, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-90179-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90179-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90178-7

  • Online ISBN: 978-3-319-90179-4

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics