Skip to main content

REM Sleep Behavior Disorder: The Link Between Synucleinopathies and REM Sleep Circuits

  • Chapter
  • First Online:

Abstract

Normal REM sleep is characterized by vivid dreaming, rapid eye movements, and wake-like cortical activity that are accompanied by generalized skeletal muscle paralysis. A defined network of brainstem nuclei control REM sleep motor paralysis, and abnormal control of this network is thought to underlie the excessive and often violent movements in REM sleep behavior disorder (RBD). A major concern associated with RBD is that the majority of patients (80–90%) without identified comorbidities eventually develop some form of synucleinopathy, primarily Parkinson’s disease, dementia with Lewy bodies, or multiple system atrophy. This group of diseases is linked to aggregates of the misfolded endogenous protein alpha-synuclein (αSyn). The high level of association between RBD and later synucleinopathy has led to the hypothesis that RBD itself is an early symptom of developing synucleinopathies that arise from degeneration of the brainstem circuitry that normally suppresses muscle activity in REM sleep. Indeed, animal models show that the integrity of this region is required for normal muscle paralysis across species, and human synucleinopathy patients display αSyn aggregates and signs of degeneration within the brainstem REM sleep network. In this chapter, we outline the clinical and basic science evidence supporting the hypothesis that RBD is caused by synucleinopathy progressing through the brainstem regions that regulate muscle paralysis in normal REM sleep. Understanding RBD progression is vital as it could lead to neuroprotective strategies against later synucleinopathy development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Haba-Rubio J, Frauscher B, Marques-Vidal P, et al. Prevalence and determinants of REM sleep behavior disorder in the general population. Sleep. 2017; https://doi.org/10.1093/sleep/zsx197. [Epub ahead of print].

  2. Kang S-H, Yoon I-Y, Lee SD, Han JW, Kim TH, Kim KW. REM sleep behavior disorder in the Korean elderly population: prevalence and clinical characteristics. Sleep. 2013;36(8):1147–52. https://doi.org/10.5665/sleep.2874.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Boot BP, Boeve BF, Roberts RO, et al. Probable rapid eye movement sleep behavior disorder increases risk for mild cognitive impairment and Parkinson disease: a population-based study. Ann Neurol. 2012;71(1):49–56. https://doi.org/10.1002/ana.22655.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Iranzo A, Tolosa E, Gelpi E, et al. Neurodegenerative disease status and post-mortem pathology in idiopathic rapid-eye-movement sleep behavior disorder: an observational cohort study. Lancet Neurol. 2013;12(5):443–53. https://doi.org/10.1016/S1474-4422(13)70056-5.

    Article  PubMed  Google Scholar 

  5. Dauvilliers Y, Postuma RB, Ferini-Strambi L, et al. Family history of idiopathic REM behavior disorder a multicenter case-control study. Neurology. 2013;80(24):2233–5. https://doi.org/10.1212/WNL.0b013e318296e967.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Schenck CH, Mahowald MW. REM sleep behavior disorder: clinical, developmental, and neuroscience perspectives 16 years after its formal identification in SLEEP. Sleep. 2002;25(2):120–38. https://doi.org/10.1038/nrn915.

    Article  PubMed  CAS  Google Scholar 

  7. De Cock VC, Vidailhet M, Leu S, et al. Restoration of normal motor control in Parkinson’s disease during REM sleep. Brain. 2007;130(2):450–6. https://doi.org/10.1093/brain/awl363.

    Article  PubMed  Google Scholar 

  8. Schenck CH, Lee SA, Bornemann MAC, Mahowald MW. Potentially lethal behaviors associated with rapid eye movement sleep behavior disorder: review of the literature and forensic implications. J Forensic Sci. 2009;54(6):1475–84. https://doi.org/10.1111/j.1556-4029.2009.01163.x.

    Article  PubMed  Google Scholar 

  9. Oudiette D, De Cock VC, Lavault S, Leu S, Vidailhet M, Arnulf I. Nonviolent elaborate behaviors may also occur in REM sleep behavior disorder. Neurology. 2009;72(6):551–7.

    Article  CAS  PubMed  Google Scholar 

  10. Bradley F, Boeve MD. Idiopathic REM sleep behavior disorder in the development of Parkinson’s disease. Lancet Neurol. 2013;12(5):469–82. https://doi.org/10.1016/S1474-4422(13)70054-1.Idiopathic.

    Article  Google Scholar 

  11. Schenck CH, Mahowald MW. REM sleep parasomnias. Neurol Clin. 1996;14(4):697–720.

    Article  CAS  PubMed  Google Scholar 

  12. Braak H, Del Tredici K, Rüb U, De Vos RAI, Jansen Steur ENH, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211.

    Article  PubMed  Google Scholar 

  13. Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science. 1997;276(5321):2045–7.

    Article  CAS  PubMed  Google Scholar 

  14. Spillantini MG, Schmidt ML, Lee VM-Y, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. Nature. 1997;388:839–40.

    Article  CAS  PubMed  Google Scholar 

  15. Iranzo A, Molinuevo JL, Santamaría J, et al. Rapid-eye-movement sleep behavior disorder as an early marker for a neurodegenerative disorder: a descriptive study. Lancet Neurol. 2006;5(7):572–7. https://doi.org/10.1016/S1474-4422(06)70476-8.

    Article  PubMed  Google Scholar 

  16. Boeve BF, Silber MH, Saper CB, et al. Pathophysiology of REM sleep behavior disorder and relevance to neurodegenerative disease. Brain. 2007;130(11):2770–88. https://doi.org/10.1093/brain/awm056.

    Article  CAS  PubMed  Google Scholar 

  17. Boeve BF, Silber MH, Ferman TJ, Lucas JA, Parisi JE. Association of REM sleep behavior disorder and neurodegenerative disease may reflect an underlying synucleinopathy. Mov Disord. 2001;16(4):622–30. https://doi.org/10.1002/mds.1120.

    Article  PubMed  CAS  Google Scholar 

  18. Iranzo A, Ratti PL, Casanova-Molla J, Serradell M, Vilaseca I, Santamaria J. Excessive muscle activity increases over time in idiopathic REM sleep behavior disorder. Sleep. 2009;32(9):1149–53.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Livia Fantini M, Gagnon J-F, Petit D, et al. Slowing of electroencephalogram in rapid eye movement sleep behavior disorder. Ann Neurol. 2003;53:774–80.

    Article  Google Scholar 

  20. Braak H, Rüb U, Gai WP, Del Tredici K. Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm. 2003;110(5):517–36. https://doi.org/10.1007/s00702-002-0808-2.

    Article  PubMed  CAS  Google Scholar 

  21. Brooks PL, Peever JH. Impaired GABA and glycine transmission triggers cardinal features of rapid eye movement sleep behavior disorder in mice. J Neurosci. 2011;31(19):7111–21. https://doi.org/10.1523/JNEUROSCI.0347-11.2011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Brooks PL, Peever JH. Glycinergic and GABA(a)-mediated inhibition of somatic motoneurons does not mediate rapid eye movement sleep motor atonia. J Neurosci. 2008;28(14):3535–45. https://doi.org/10.1523/JNEUROSCI.5023-07.2008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Brooks PL, Peever JH. Identification of the transmitter and receptor mechanisms responsible for REM sleep paralysis. J Neurosci. 2012;32(29):9785–95. https://doi.org/10.1523/JNEUROSCI.0482-12.2012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Nakamura Y, Goldberg LJ, Chandler SH, Chase MH. Intracellular analysis of trigeminal motoneuron activity during sleep in the cat. Science. 1978;199(4325):204–7.

    Article  CAS  PubMed  Google Scholar 

  25. Morales FR, Schadt J, Chase MH. Intracellular recording from spinal cord motoneurons in the chronic cat. Physiol Behav. 1981;27(2):355–62. https://doi.org/10.1016/0031-9384(81)90280-8.

    Article  PubMed  CAS  Google Scholar 

  26. Fantini ML, Michaud M, Gosselin N, Lavigne G, Montplaisir J. Periodic leg movements in REM sleep behavior disorder and related autonomic and EEG activation. Neurology. 2002;59(12):1889–94.

    Article  CAS  PubMed  Google Scholar 

  27. Lai YY, Siegel JM. Medullary regions mediating atonia. J Neurosci. 1988;8:4790–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schenkel E, Siegel JM. REM sleep without atonia after lesions of the medial medulla. Neurosci Lett. 1989;98(2):159–65. https://doi.org/10.1016/0304-3940(89)90503-X.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Holmes CJ, Mainville LS, Jones BE. Distribution of cholinergic, gabaergic and serotonergic neurons in the medial medullary reticular formation and their projections studied by cytotoxic lesions in the cat. Neuroscience. 1994;62(4):1155–78. https://doi.org/10.1016/0306-4522(94)90351-4.

    Article  PubMed  CAS  Google Scholar 

  30. Vetrivelan R, Fuller PM, Tong Q, Lu J. Medullary circuitry regulating rapid eye movement sleep and motor atonia. J Neurosci. 2009;29(29):9361–9. https://doi.org/10.1523/JNEUROSCI.0737-09.2009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Lu J, Sherman D, Devor M, Saper CB. A putative flip-flop switch for control of REM sleep. Nature. 2006;441(7093):589–94. https://doi.org/10.1038/nature04767.

    Article  CAS  PubMed  Google Scholar 

  32. Chase MH, Enomoto S, Hiraba K, et al. Role of medullary reticular neurons in the inhibition of trigeminal motoneurons during active sleep. Exp Neurol. 1984;84(2):364–73. https://doi.org/10.1016/0014-4886(84)90233-4.

    Article  PubMed  CAS  Google Scholar 

  33. Siegel JM, Wheeler RL, McGinty DJ. Activity of medullary reticular formation neurons in the unrestrained cat during waking and sleep. Brain Res. 1979;179(1):49–60. http://www.ncbi.nlm.nih.gov/pubmed/228803. Accessed 3 Oct 2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yamuy J, Mancillas JR, Morales FR, Chase MH. C-fos expression in the pons and medulla of the cat during carbachol-induced active sleep. J Neurosci. 1993;13(6):2703–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lai Y-Y, Kodama T, Schenkel E, Siegel JM. Behavioral response and transmitter release during atonia elicited by medial medullary stimulation. J Neurophysiol. 2010;104(4):2024–33. https://doi.org/10.1152/jn.00528.2010.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Krenzer M, Anaclet C, Vetrivelan R, et al. Brainstem and spinal cord circuitry regulating REM sleep and muscle atonia. PLoS One. https://doi.org/10.1371/journal.pone.0024998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Boissard R, Fort P, Gervasoni D, Barbagli B, Luppi PH. Localization of the GABAergic and non-GABAergic neurons projecting to the sublaterodorsal nucleus and potentially gating paradoxical sleep onset. Eur J Neurosci. 2003;18(6):1627–39. https://doi.org/10.1046/j.1460-9568.2003.02861.x.

    Article  PubMed  Google Scholar 

  38. Boissard R, Gervasoni D, Schmidt MH, Barbagli B, Fort P, Luppi P-H. The rat ponto-medullary network responsible for paradoxical sleep onset and maintenance: a combined microinjection and functional neuroanatomical study. Eur J Neurosci. 2002;16(10):1959–73. http://www.ncbi.nlm.nih.gov/pubmed/12453060. Accessed 3 Oct 2016

    Article  PubMed  Google Scholar 

  39. Siegel J, Nienhuis R, Fahringer H, et al. Neuronal activity in narcolepsy: identification of cataplexy-related cells in the medial medulla. Science. 1991;252(5010):1315–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Clément O, Sapin E, Bérod A, Fort P, Luppi P-H. Evidence that neurons of the sublaterodorsal tegmental nucleus triggering paradoxical (REM) sleep are glutamatergic. Sleep. 2011;34(4):419–23.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cox J, Pinto L, Dan Y. Calcium imaging of sleep–wake related neuronal activity in the dorsal pons. Nat Commun. 2016;7(2015):10763. https://doi.org/10.1038/ncomms10763.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Van Dort CJ, Zachs DP, Kenny JD, et al. Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep. Proc Natl Acad Sci. 2015;112(2):584–9. https://doi.org/10.1073/pnas.1423136112.

    Article  PubMed  CAS  Google Scholar 

  43. Grace KP, Liu H, Horner RL. 5-HT1A receptor-responsive pedunculopontine tegmental neurons suppress REM sleep and respiratory motor activity. J Neurosci. 2012;32(5):1622–33. https://doi.org/10.1523/JNEUROSCI.5700-10.2012.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Kaur S, Thankachan S, Begum S, Liu M, Blanco-Centurion C, Shiromani PJ. Hypocretin-2 saporin lesions of the ventrolateral periaquaductal gray (v/PAG) increase REM sleep in hypocretin knockout mice. PLoS One. 2009;4(7). https://doi.org/10.1371/journal.pone.0006346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gassel M, Marchiafava P, Pompeiano O. Rubrospinal influences during desynchronized sleep. Nature. 1966;209(5029):1218–20. https://doi.org/10.1017/CBO9781107415324.004.

    Article  PubMed  CAS  Google Scholar 

  46. Jego S, Glasgow SD, Herrera CG, et al. Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat Neurosci. 2013;16(11):1637–43. https://doi.org/10.1038/nn.3522.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Jouvet M. Recherches sur les structures nerveuses et les mecanismes responsables des differentes phases du sommeil physiologique. Arch Ital Biol. 1962;100:125–206. https://doi.org/10.1126/science.276.5321.2045.

    Article  CAS  PubMed  Google Scholar 

  48. Karlsson K, Gall AJ, Mohns EJ, Seelke AMH, Blumberg MS. The neural substrates of infant sleep in rats. PLoS Biol. 2005;3(5):0891–901. https://doi.org/10.1371/journal.pbio.0030143.

    Article  CAS  Google Scholar 

  49. Karlsson K, Blumberg MS. Active medullary control of atonia in week-old rats. Neuroscience. 2005;130(1):275–83. https://doi.org/10.1016/j.neuroscience.2004.09.002.

    Article  PubMed  CAS  Google Scholar 

  50. Fraigne JJ, Adamantidis A, Peever J. Optogenetic investigation of rapid eye movement (REM) sleep circuitry. Sleep (Abstract Suppl). 2014:37.

    Google Scholar 

  51. Fraigne JJ, Torontali ZA, Bulner S, Peever J. The role of the ventral medulla in REM sleep control. Abstr Present 2016 Gordon Res Conf. 2016.

    Google Scholar 

  52. Devaud LL, Fritschy JM, Sieghart W, Morrow AL. Bidirectional alterations of GABA(a) receptor subunit peptide levels in rat cortex during chronic ethanol consumption and withdrawal. J Neurochem. 1997;69(1):126–30. https://doi.org/10.1046/j.1471-4159.1997.69010126.x.

    Article  PubMed  CAS  Google Scholar 

  53. Plazzi G, Montagna P, Meletti S, Lugaresi E. Polysomnographic study of sleeplessness and oneiricisms in the alcohol withdrawal syndrome. Sleep Med 2002;3(3):279–282. http://www.ncbi.nlm.nih.gov/pubmed/14592220. Accessed 3 Oct 2016.

    Article  PubMed  Google Scholar 

  54. Sulzer D. Multiple hit hypotheses for dopamine neuron loss in Parkinson’s disease. Trends Neurosci. 2007;30(5):244–50. https://doi.org/10.1016/j.tins.2007.03.009.

    Article  PubMed  CAS  Google Scholar 

  55. Verhave PS, Jongsma MJ, Van den Berg RM, et al. REM sleep behavior disorder in the marmoset MPTP model of early Parkinson disease. Sleep. 2011;34(8):1119–25. https://doi.org/10.5665/sleep.1174.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Qiu MH, Vetrivelan R, Fuller PM, Lu J. Basal ganglia control of sleep-wake behavior and cortical activation. Eur J Neurosci. 2010;31(3):499–507. https://doi.org/10.1111/j.1460-9568.2009.07062.x.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Uchiyama M, Isse K, Tanaka K, et al. Incidental Lewy body disease in a patient with REM sleep behavior disorder. Neurology 1995;45(4):709–712. http://www.ncbi.nlm.nih.gov/pubmed/7723959. Accessed 3 Oct 2016.

    Article  CAS  PubMed  Google Scholar 

  58. Manni R, Ratti PL, Terzaghi M. “Secondary incidental” REM sleep behavior disorder: do we ever think of it? Sleep Med. 2011;12(Suppl. 2):S50–3. https://doi.org/10.1016/j.sleep.2011.10.011.

    Article  PubMed  Google Scholar 

  59. Zambelis T, Paparrigopoulos T, Soldatos C. REM sleep behavior disorder associated with a neurinoma of the left pontocerebellar angle REM. J Neurol Neurosurg Psychiatry. 2002;(6):819–22.

    Google Scholar 

  60. Gagnon J-F, Postuma RB, Mazza S, Doyon J, Montplaisir J. Rapid-eye-movement sleep behavior disorder and neurodegenerative diseases. Lancet Neurol. 2006;5(5):424–32. https://doi.org/10.1016/S1474-4422(06)70441-0.

    Article  PubMed  Google Scholar 

  61. Provini F, Vetrugno R, Pastorelli F, et al. Status dissociatus after surgery for tegmental ponto-mesencephalic cavernoma: a state-dependent disorder of motor control during sleep. Mov Disord. 2004;19(6):719–23. https://doi.org/10.1002/mds.20027.

    Article  PubMed  Google Scholar 

  62. García-Lorenzo D, Longo-Dos Santos C, Ewenczyk C, et al. The coeruleus/subcoeruleus complex in rapid eye movement sleep behavior disorders in Parkinson’s disease. Brain. 2013;136(7):2120–9. https://doi.org/10.1093/brain/awt152.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ehrminger M, Latimier A, Pyatigorskaya N, et al. The coeruleus/subcoeruleus complex in idiopathic rapid eye movement sleep behavior disorder. Brain. 2016;139(4):1180–8. https://doi.org/10.1093/brain/aww006.

    Article  PubMed  Google Scholar 

  64. Braak E, Sandmann-Keil D, Rüb U, et al. α-synuclein immunopositive Parkinson’s disease-related inclusion bodies in lower brainstem nuclei. Acta Neuropathol. 2001;101(3):195–201. https://doi.org/10.1007/s004010000247.

  65. Norris EH, Giasson BI, Lee VM-Y. Αlpha-synuclein: normal function and role in neurodegenerative diseases. Curr Top Dev Biol. 2004;60:17–54. https://doi.org/10.1016/S0070-2153(04)60002-0.

    Article  PubMed  CAS  Google Scholar 

  66. Murphy DD, Rueter SM, Trojanowski JQ, Lee VM. Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J Neurosci. 2000;20(9):3214–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ulmer TS, Bax A, Cole NB, Nussbaum RL. Structure and dynamics of micelle-bound human -synuclein. J Biol Chem. 2005;280(10):9595–603. https://doi.org/10.1074/jbc.M411805200.

    Article  PubMed  CAS  Google Scholar 

  68. Vilar M, Chou H-T, Lührs T, et al. The fold of alpha-synuclein fibrils. Proc Natl Acad Sci U S A. 2008;105(25):8637–42. https://doi.org/10.1073/pnas.0712179105.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Cuervo AM. Impaired degradation of mutant -synuclein by chaperone-mediated autophagy. Science. 2004;305(5688):1292–5. https://doi.org/10.1126/science.1101738.

    Article  PubMed  CAS  Google Scholar 

  70. Chartier-Harlin M-C, Kachergus J, Roumier C, et al. α-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet. 2004;364(9440):1167–9. https://doi.org/10.1016/S0140-6736(04)17103-1.

    Article  PubMed  CAS  Google Scholar 

  71. Singleton AB, Farrer M, Johnson J, et al. α-Synuclein locus triplication causes Parkinson’s disease. Science. 2003;302(5646):841.

    Article  CAS  PubMed  Google Scholar 

  72. Dauer W, Kholodilov N, Vila M, et al. Resistance of alpha -synuclein null mice to the parkinsonian neurotoxin MPTP. Proc Natl Acad Sci. 2002;99(22):14524–9. https://doi.org/10.1073/pnas.172514599\r172514599. [pii]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  73. Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow W. Lewy body–like pathology in long-term embryonic nigral transplants in Parkinson’s disease. https://doi.org/10.1038/nm1747.

    Article  CAS  PubMed  Google Scholar 

  74. Li J-Y, Englund E, Holton JL, et al. Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. https://doi.org/10.1038/nm1746.

    Article  CAS  PubMed  Google Scholar 

  75. Luk KC, Kehm V, Carroll J, et al. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science. 2012;338(6109):949–53. https://doi.org/10.1126/science.1227157.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Recasens A, Dehay B, Bové J, et al. Lewy body extracts from Parkinson disease brains trigger α-synuclein pathology and neurodegeneration in mice and monkeys. Ann Neurol. 2014;75(3):351–62. https://doi.org/10.1002/ana.24066.

    Article  PubMed  CAS  Google Scholar 

  77. Gorbatyuk OS, Li S, Sullivan LF, et al. The phosphorylation state of Ser-129 in human -synuclein determines neurodegeneration in a rat model of Parkinson disease. Proc Natl Acad Sci. 2008;105(2):763–8. https://doi.org/10.1073/pnas.0711053105.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Boeve BF, Dickson D, Olson E, et al. Insights into REM sleep behavior disorder pathophysiology in brainstem-predominant Lewy body disease. Sleep Med. 2007;8:60–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Peever .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McKenna, D., Peever, J. (2019). REM Sleep Behavior Disorder: The Link Between Synucleinopathies and REM Sleep Circuits. In: Schenck, C., Högl, B., Videnovic, A. (eds) Rapid-Eye-Movement Sleep Behavior Disorder. Springer, Cham. https://doi.org/10.1007/978-3-319-90152-7_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90152-7_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90151-0

  • Online ISBN: 978-3-319-90152-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics