Advertisement

Research Method

Chapter
  • 252 Downloads
Part of the SpringerBriefs in Energy book series (BRIEFSENERGY)

Abstract

To evaluate the energy behavior of the buildings it is necessary to know numerous data related with its geometry, internal and external loads, construction systems, air-conditioning systems and user profiles. Selecting and quantifying the parameters needed is a complex task which requires the designer’s experience and knowledge, as well as an in-depth understanding of the calculation process.

References

  1. Belcher SE, Hacker JN, Powell DS (2005) Constructing design weather data for future climates. Build Serv Eng Res Technol 1:49–61.  https://doi.org/10.1191/0143624405bt112oaCrossRefGoogle Scholar
  2. Bishop CM (1995) Neural Networks for Pattern Recognition, 1st edn. Oxford University Press, New YorkzbMATHGoogle Scholar
  3. Citec UBB, Decon UC (2014) Manual de Hermeticidad al aire de Edificaciones. (MOP), Ministerio de Obras PúblicasGoogle Scholar
  4. Corrado V, Fabrizio E (2007) Assessment of building cooling energy need through a quasi-steady state model: Simplified correlation for gain-loss mismatch. Energy Build 39:569–579.  https://doi.org/10.1016/j.enbuild.2006.09.012CrossRefGoogle Scholar
  5. Dener E, Torino P (2007) Building energy performance assessment through simplified models: application of the ISO 13790 quasi-steady state method. Build Simul 2007:79–86Google Scholar
  6. EC 2012/C 115/01 (2012) Commission Delegated Regulation (EU) No 244/2012 of 16 January 2012 supplementing Directive 2010/31/EU of the European Parliament and of the Council on the energy performance of buildings by establishing a comparative methodology framework for calculating. Off J Eur Union 28.  https://doi.org/10.3000/1977091x.c_2012.115.eng
  7. Eu (2010) Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings. Off J Eur Union 13–35.  https://doi.org/10.3000/17252555.l_2010.153.eng
  8. INN (2008) NCh 1079. Of 2008 Arquitectura y Construcción- Zonificación climático habitacional para ChileGoogle Scholar
  9. ISO (2008) EN ISO 13790: 2008 Energy performance of buildings-Calculation of energy use for space heating and cooling. 3190–200Google Scholar
  10. Jokisalo J, Kurnitski J (2007) Performance of EN ISO 13790 utilisation factor heat demand calculation method in a cold climate. Energy Build 39:236–247.  https://doi.org/10.1016/j.enbuild.2006.06.007CrossRefGoogle Scholar
  11. Kottek M, Grieser J, Beck C et al (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Zeitschrift 15:259–263.  https://doi.org/10.1127/0941-2948/2006/0130CrossRefGoogle Scholar
  12. Krigger J, Dorsi C (2004) Residential energy: cost savings and comfort for existing buildings, 4th edn. Saturn Resource Management, Inc., HelenaGoogle Scholar
  13. Met Office Hadley Centre (2016) Met Office Hadley Centre for climate science and services. http://www.metoffice.gov.uk/climate-guide/science/science-behind-climate-change/hadley. Accessed 20 Feb 2016
  14. Ministerio de Desarrollo Social de Chile (2016) Banco Integrado de Proyectos. Ministerio de Desarrollo Social, Chile. http://bip.mideplan.cl/bip-trabajo/index.html. Accessed 20 Feb 2016
  15. Negendahl K (2015) Automation in construction building performance simulation in the early design stage: an introduction to integrated dynamic models. Autom Constr 54:39–53.  https://doi.org/10.1016/j.autcon.2015.03.002CrossRefGoogle Scholar
  16. Negendahl K, Nielsen TR (2015) Building energy optimization in the early design stages: a simplified method. Energy Build 105:88–99.  https://doi.org/10.1016/j.enbuild.2015.06.087CrossRefGoogle Scholar
  17. Odriozoloa Maritorena M (2008) Cálculo y medida de inflitraciones de aire en edificios. Universidad del País VascoGoogle Scholar
  18. Pope VD, Gallani ML, Rowntree PR, Stratton Ra (2000) The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3. Clim Dyn 16:123–146.  https://doi.org/10.1007/s003820050009CrossRefGoogle Scholar
  19. Rubio-Bellido C, Pulido-Arcas JA, Ureta-Gragera M (2015) Aplicabilidad de estrategias genéricas de diseño pasivo en edificaciones bajo la influencia del cambio climático en Concepción y Santiago, Chile. Hábitat Sustentable 5:33–41Google Scholar
  20. Staudt A, van D Hans ED (2010) Report on the application of CEN standard EN ISO 13790: energy performance of buildings—calculation of energy use for space heating and coolingGoogle Scholar
  21. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New YorkCrossRefGoogle Scholar
  22. Zhao H, Magoulès F (2012) A review on the prediction of building energy consumption. Renew Sustain Energy Rev 16:3586–3592CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Higher Technical School of Building EngineeringUniversidad de SevillaSevilleSpain
  2. 2.Faculty of Construction, Architecture and DesignUniversidad Del Bío-BíoConcepción, VIII–ConcepciónChile

Personalised recommendations