Skip to main content

Vaccines Against West Nile Virus

  • Chapter
  • First Online:
Prospects of Plant-Based Vaccines in Veterinary Medicine

Abstract

Despite the availability of two veterinary vaccines against West Nile virus (WNV), there remains a desperate need for a more efficient, safer, cheaper WNV vaccine that can be delivered conveniently to animals. The global threat of WNV epidemics with increasingly severe neuroinvasive infections makes this need even more urgent. To date, vaccine candidates based on inactivated, live-attenuated, or chimeric virus, and viral DNA and protein subunits have been developed. However, commercialization of a WNV veterinary vaccine may largely depend on the economics of vaccine production, as only novel low-cost production platforms would produce vaccines that outcompete the cost of clinical treatment for animals. In this chapter, we review the progress of using plants to develop effective WNV vaccines and address the economic challenges of WNV vaccine production. The status of current WNV vaccine development is summarized. The advantages of plant-based platforms for WNV vaccine production in cost, speed and scalability are briefly discussed. The progress in developing WNV subunit vaccines in plants is reviewed within the context of their expression, characterization, downstream processing, and potency in animal models. The development of WNV vaccines based on virus-like particles is also highlighted. We are confident that plants are one of the platforms that offer potent, safe and affordable veterinary vaccines against WNV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbink P, Larocca RA, De La Barrera RA, Bricault CA, Moseley ET, Boyd M, Kirilova M, Li Z, Ng’ang’a D, Nanayakkara O, Nityanandam R, Mercado NB, Borducchi EN, Agarwal A, Brinkman AL, Cabral C, Chandrashekar A, Giglio PB, Jetton D, Jimenez J, Lee BC, Mojta S, Molloy K, Shetty M, Neubauer GH, Stephenson KE, Peron JPS, Zanotto PMDA, Misamore J, Finneyfrock B, Lewis MG, Alter G, Modjarrad K, Jarman RG, Eckels KH, Michael NL, Thomas SJ, Barouch DH (2016) Protective efficacy of multiple vaccine platforms against Zika virus challenge in rhesus monkeys. Science 353(6304):1129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aharonson-Raz K, Lichter-Peled A, Tal S, Gelman B, Cohen D, Klement E, Steinman A (2014) Spatial and temporal distribution of West Nile virus in horses in Israel (1997–2013)–from endemic to epidemics. PLoS ONE 9(11):e113149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alonso-Padilla J, de Oya NJ, Blazquez AB, Escribano-Romero E, Escribano JM, Saiz JC (2011) Recombinant West Nile virus envelope protein E and domain III expressed in insect larvae protects mice against West Nile disease. Vaccine 29(9):1830–1835

    Article  PubMed  CAS  Google Scholar 

  • Amanna IJ, Raue HP, Slifka MK (2012) Development of a new hydrogen peroxide-based vaccine platform. Nat Med 18(6):974–979

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Appaiahgari MB, Abdin MZ, Bansal KC, Vrati S (2009) Expression of Japanese encephalitis virus envelope protein in transgenic tobacco plants. J Virol Methods 162(1–2):22–29

    Article  PubMed  CAS  Google Scholar 

  • Arroyo J, Miller C, Catalan J, Myers GA, Ratterree MS, Trent DW, Monath TP (2004) ChimeriVax-West Nile virus live-attenuated vaccine: preclinical evaluation of safety, immunogenicity, and efficacy. J Virol 78(22):12497–12507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barba-Spaeth G, Dejnirattisai W, Rouvinski A, Vaney M-C, Medits I, Sharma A, Simon-Lorière E, Sakuntabhai A, Cao-Lormeau V-M, Haouz A, England P, Stiasny K, Mongkolsapaya J, Heinz FX, Screaton GR, Rey FA (2016) Structural basis of potent Zika–dengue virus antibody cross-neutralization. Nature 536(7614):48–53

    Article  PubMed  CAS  Google Scholar 

  • Bardina SV, Bunduc P, Tripathi S, Duehr J, Frere JJ, Brown JA, Nachbagauer R, Foster GA, Krysztof D, Tortorella D, Stramer SL, Garcia-Sastre A, Krammer F, Lim JK (2017) Enhancement of Zika virus pathogenesis by preexisting antiflavivirus immunity. Science 356(6334):175–180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barta A, Sommergruber K, Thompson D, Hartmuth K, Matzke MA, Matzke AJ (1986) The expression of a nopaline synthase—human growth hormone chimaeric gene in transformed tobacco and sunflower callus tissue. Plant Mol Biol 6(5):347–357

    Article  PubMed  CAS  Google Scholar 

  • Brandler S, Tangy F (2013) Vaccines in development against West Nile virus. Viruses 5(10):2384–2409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brinton MA (2013) Replication cycle and molecular biology of the West Nile virus. Viruses 6(1):13–53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bryan JT, Buckland B, Hammond J, Jansen KU (2016) Prevention of cervical cancer: journey to develop the first human papillomavirus virus-like particle vaccine and the next generation vaccine. Curr Opin Chem Biol 32:34–47

    Article  PubMed  CAS  Google Scholar 

  • Castillo-Olivares J, Wood J (2004) West Nile virus infection of horses. Vet Res 35(4):467–483

    Article  PubMed  Google Scholar 

  • Chang DC, Liu WJ, Anraku I, Clark DC, Pollitt CC, Suhrbier A, Hall RA, Khromykh AA (2008) Single-round infectious particles enhance immunogenicity of a DNA vaccine against West Nile virus. Nat Biotechnol 26(5):571–577

    Article  PubMed  CAS  Google Scholar 

  • Chen Q (2008) Expression and purification of pharmaceutical proteins in plants. Biol Eng 1(4):291–321

    Article  CAS  Google Scholar 

  • Chen Q (2011a) Expression and manufacture of pharmaceutical proteins in genetically engineered horticultural plants. Transgenic Horticultural Crops: Challenges and Opportunities - Essays by Experts, Mou B, Scorza R. Taylor & Francis, Boca Raton, pp 83–124

    Chapter  Google Scholar 

  • Chen Q (2011b) Turning a new leaf. Eur Biopharm Rev 2(56):64–68

    Google Scholar 

  • Chen Q (2015) Plant-made vaccines against West Nile virus are potent, safe, and economically feasible. Biotechnol J 10(5):671–680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Q (2016) Glycoengineering of plants yields glycoproteins with polysialylation and other defined N-glycoforms. Proc Natl Acad Sci U S A 113(34):9404–9406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Q (2018) Recombinant therapeutic molecules produced in plants. Adv Bota Res 86:207–244. https://doi.org/10.1016/bs.abr.2017.11.006

  • Chen Q, Davis K (2016) The potential of plants as a system for the development and production of human biologics. F1000Research 5(912): https://doi.org/10.12688/f11000research.18010.12681

    Article  CAS  Google Scholar 

  • Chen Q, Lai H (2013) Plant-derived virus-like particles as vaccines. Hum Vaccin Immunother 9(1):26–49

    Article  PubMed  CAS  Google Scholar 

  • Chen Q, Lai H (2015) Gene delivery into plant cells for recombinant protein production. Biomed Res Int 2015:932161

    PubMed  PubMed Central  Google Scholar 

  • Chen Q, He J, Phoolcharoen W, Mason HS (2011) Geminiviral vectors based on bean yellow dwarf virus for production of vaccine antigens and monoclonal antibodies in plants. Hum Vaccin 7(3):331–338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Q, Dent M, Hurtado J, Stahnke J, McNulty A, Leuzinger K, Lai H (2016) Transient protein expression by agroinfiltration in lettuce. Methods Mol Biol 1385:55–67

    Article  PubMed  CAS  Google Scholar 

  • Chen Q, Dent M, Mason H (2018) Plant-made vaccines. In: Kermode A, Jiang L (eds) Molecular pharming: Applications, challenges, and emerging areas. John Wiley & Sons, pp 231–273. https://doi.org/10.1002/9781118801512.ch10

    Chapter  Google Scholar 

  • Chu JJ, Rajamanonmani R, Li J, Bhuvanakantham R, Lescar J, Ng ML (2005) Inhibition of West Nile virus entry by using a recombinant domain III from the envelope glycoprotein. J Gen Virol 86(Pt 2):405–412

    Article  PubMed  CAS  Google Scholar 

  • Chu JH, Chiang CC, Ng ML (2007) Immunization of flavivirus West Nile recombinant envelope domain III protein induced specific immune response and protection against West Nile virus infection. J Immunol 178(5):2699–2705

    Article  PubMed  CAS  Google Scholar 

  • Chua AJ, Vituret C, Tan ML, Gonzalez G, Boulanger P, Ng ML, Hong SS (2013) A novel platform for virus-like particle-display of flaviviral envelope domain III: induction of Dengue and West Nile virus neutralizing antibodies. Virol J 10:129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cielens I, Jackevica L, Strods A, Kazaks A, Ose V, Bogans J, Pumpens P, Renhofa R (2014) Mosaic RNA phage VLPs carrying domain III of the West Nile virus E protein. Mol Biotechnol 56(5):459–469

    Article  PubMed  CAS  Google Scholar 

  • Coconi-Linares N, Ortega-Davila E, Lopez-Gonzalez M, Garcia-Machorro J, Garcia-Cordero J, Steinman RM, Cedillo-Barron L, Gomez-Lim MA (2013) Targeting of envelope domain III protein of DENV type 2 to DEC-205 receptor elicits neutralizing antibodies in mice. Vaccine 31(19):2366–2371

    Article  PubMed  CAS  Google Scholar 

  • Coller BA, Pai V, Weeks-Levy C, Ogata S (2012) United States patent application No. US20120141520 A1: recombinant subunit West Nile virus vaccine for protection of human subjects

    Google Scholar 

  • Cribbs DH, Ghochikyan A, Vasilevko V, Tran M, Petrushina I, Sadzikava N, Babikyan D, Kesslak P, Kieber-Emmons T, Cotman CW, Agadjanyan MG (2003) Adjuvant-dependent modulation of Th1 and Th2 responses to immunization with beta-amyloid. Int Immunol 15(4):505–514

    Article  PubMed  CAS  Google Scholar 

  • Davis BS, Chang GJ, Cropp B, Roehrig JT, Martin DA, Mitchell CJ, Bowen R, Bunning ML (2001) West Nile virus recombinant DNA vaccine protects mouse and horse from virus challenge and expresses in vitro a noninfectious recombinant antigen that can be used in enzyme-linked immunosorbent assays. J Virol 75(9):4040–4047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dayan GH, Pugachev K, Bevilacqua J, Lang J, Monath TP (2013) Preclinical and clinical development of a YFV 17 D-based chimeric vaccine against West Nile virus. Viruses 5(12):3048–3070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Filette M, Soehle S, Ulbert S, Richner J, Diamond MS, Sinigaglia A, Barzon L, Roels S, Lisziewicz J, Lorincz O, Sanders NN (2014) Vaccination of mice using the West Nile virus E-protein in a DNA prime-protein boost strategy stimulates cell-mediated immunity and protects mice against a lethal challenge. PLoS ONE 9(2):e87837

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dejnirattisai W, Supasa P, Wongwiwat W, Rouvinski A, Barba-Spaeth G, Duangchinda T, Sakuntabhai A, Cao-Lormeau V-M, Malasit P, Rey FA, Mongkolsapaya J, Screaton GR (2016) Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with zika virus. Nat Immunol advance online publication

    Google Scholar 

  • Demento SL, Bonafe N, Cui W, Kaech SM, Caplan MJ, Fikrig E, Ledizet M, Fahmy TM (2010) TLR9-targeted biodegradable nanoparticles as immunization vectors protect against West Nile encephalitis. J Immunol 185(5):2989–2997

    Article  PubMed  CAS  Google Scholar 

  • Dent M, Hurtado J, Paul AM, Sun H, Lai H, Yang M, Esqueda A, Bai F, Steinkellner H, Chen Q (2016) Plant-produced anti-dengue virus monoclonal antibodies exhibit reduced antibody-dependent enhancement of infection activity. J Gen Virol 97(12):3280–3290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Durbin AP, Wright PF, Cox A, Kagucia W, Elwood D, Henderson S, Wanionek K, Speicher J, Whitehead SS, Pletnev AG (2013) The live attenuated chimeric vaccine rWN/DEN4Delta30 is well-tolerated and immunogenic in healthy flavivirus-naive adult volunteers. Vaccine 31(48):5772–5777

    Article  PubMed  CAS  Google Scholar 

  • Hall RA, Nisbet DJ, Pham KB, Pyke AT, Smith GA, Khromykh AA (2003) DNA vaccine coding for the full-length infectious Kunjin virus RNA protects mice against the New York strain of West Nile virus. Proc Natl Acad Sci U S A 100(18):10460–10464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Halstead SB (2014) Dengue antibody-dependent enhancement: knowns and unknowns. Microbiol Spectr 2(6)

    Google Scholar 

  • Haq TA, Mason HS, Clements JD, Arntzen CJ (1995) Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science 268(5211):714–716

    Article  PubMed  CAS  Google Scholar 

  • He J, Lai H, Brock C, Chen Q (2012) A novel system for rapid and cost-effective production of detection and diagnostic reagents of West Nile virus in plants. J Biomed Biotechnol 2012:106783

    Article  PubMed  Google Scholar 

  • He J, Peng L, Lai H, Hurtado J, Stahnke J, Chen Q (2014) A plant-produced antigen elicits potent immune responses against West Nile virus in mice. Biomed Res Int 2014:952865

    PubMed  PubMed Central  Google Scholar 

  • Hefferon K (2014) Plant virus expression vector development: new perspectives. Biomed Res Int 2014:785382

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang Z, Chen Q, Hjelm B, Arntzen C, Mason H (2009) A DNA replicon system for rapid high-level production of virus-like particles in plants. Biotechnol Bioeng 103(4):706–714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iyer AV, Kousoulas KG (2013) A review of vaccine approaches for West Nile virus. Int J Environ Res Public Health 10(9):4200–4223

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanai R, Kar K, Anthony K, Gould LH, Ledizet M, Fikrig E, Marasco WA, Koski RA, Modis Y (2006) Crystal structure of West Nile virus envelope glycoprotein reveals viral surface epitopes. J Virol 80(22):11000–11008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim TG, Kim MY, Huy NX, Kim SH, Yang MS (2013) M cell-targeting ligand and consensus dengue virus envelope protein domain III fusion protein production in transgenic rice calli. Mol Biotechnol 54(3):880–887

    Article  PubMed  CAS  Google Scholar 

  • Kim MY, Li JY, Tien NQ, Yang M. S. (2016). Expression and assembly of cholera toxin B subunit and domain III of dengue virus 2 envelope fusion protein in transgenic potatoes. Protein Expr Purif

    Google Scholar 

  • Komar N, Langevin S, Hinten S, Nemeth N, Edwards E, Hettler D, Davis B, Bowen R, Bunning M (2003) Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg Infect Dis 9(3):311–322

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwon K-C, Daniell H (2015) Low-cost oral delivery of protein drugs bioencapsulated in plant cells. Plant Biotechnol J 13(8):1017–1022

    Article  PubMed  PubMed Central  Google Scholar 

  • Lai H, Chen Q (2012) Bioprocessing of plant-derived virus-like particles of Norwalk virus capsid protein under current good manufacture practice regulations. Plant Cell Rep 31(3):573–584

    Article  PubMed  CAS  Google Scholar 

  • Lai H, Engle M, Fuchs A, Keller T, Johnson S, Gorlatov S, Diamond MS, Chen Q (2010) Monoclonal antibody produced in plants efficiently treats West Nile virus infection in mice. Proc Natl Acad Sci U S A 107(6):2419–2424

    Article  PubMed  PubMed Central  Google Scholar 

  • Lai H, He J, Engle M, Diamond MS, Chen Q (2012) Robust production of virus-like particles and monoclonal antibodies with geminiviral replicon vectors in lettuce. Plant Biotechnol J 10(1):95–104

    Article  PubMed  CAS  Google Scholar 

  • Lai H, Paul AM, Sun H, He J, Yang M, Bai F, Chen Q (2018) A plant-produced vaccine protects mice against lethal west nile virus infection without enhancing zika or dengue virus infectivity. Vaccine 36(14):1846–1852

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lakshmi PS, Verma D, Yang X, Lloyd B, Daniell H (2013) Low cost tuberculosis vaccine antigens in capsules: expression in chloroplasts, bio-encapsulation, stability and functional evaluation in vitro. PLoS ONE 8(1):e54708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Larocca RA, Abbink P, Peron JPS, de A. Zanotto PM, Iampietro MJ, Badamchi-Zadeh A, Boyd M, Ng’ang’a D, Kirilova M, Nityanandam R, Mercado NB, Li Z, Moseley ET, Bricault CA, Borducchi EN, Giglio PB, Jetton D, Neubauer G, Nkolola JP, Maxfield LF, De La Barrera RA, Jarman RG, Eckels KH, Michael NL, Thomas SJ, Barouch DH (2016) Vaccine protection against Zika virus from Brazil. Nature 536(7617): 474–478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ledgerwood JE, Pierson TC, Hubka SA, Desai N, Rucker S, Gordon IJ, Enama ME, Nelson S, Nason M, Gu W, Bundrant N, Koup RA, Bailer RT, Mascola JR, Nabel GJ, Graham BS, Team VRCS (2011) A West Nile virus DNA vaccine utilizing a modified promoter induces neutralizing antibody in younger and older healthy adults in a phase I clinical trial. J Infect Dis 203(10):1396–1404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ledizet M, Kar K, Foellmer HG, Wang T, Bushmich SL, Anderson JF, Fikrig E, Koski RA (2005) A recombinant envelope protein vaccine against West Nile virus. Vaccine 23(30):3915–3924

    Article  PubMed  CAS  Google Scholar 

  • Leuzinger K, Dent M, Hurtado J, Stahnke J, Lai H, Zhou X, Chen Q (2013) Efficient agroinfiltration of plants for high-level transient expression of recombinant proteins. J Vis Exp (77)

    Google Scholar 

  • Lico C, Chen Q, Santi L (2008) Viral vectors for production of recombinant proteins in plants. J Cell Physiol 216(2):366–377

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lieberman MM, Clements DE, Ogata S, Wang G, Corpuz G, Wong T, Martyak T, Gilson L, Coller BA, Leung J, Watts DM, Tesh RB, Siirin M, Travassos da Rosa A, Humphreys T, Weeks-Levy C (2007) Preparation and immunogenic properties of a recombinant West Nile subunit vaccine. Vaccine 25(3):414–423

    Article  PubMed  CAS  Google Scholar 

  • Lieberman MM, Nerurkar VR, Luo H, Cropp B, Carrion R Jr, de la Garza M, Coller BA, Clements D, Ogata S, Wong T, Martyak T, Weeks-Levy C (2009) Immunogenicity and protective efficacy of a recombinant subunit West Nile virus vaccine in rhesus monkeys. Clin Vaccine Immunol 16(9):1332–1337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Clarke J, Paruch L, Dobrica MO, Caras I, Tucureanu C, Onu A, Ciulean S, Stavaru C, Eerde A, Wang Y, Steen H, Haugslien S, Petrareanu C, Lazar C, Popescu I, Bock R, Dubuisson J, Branza-Nichita N (2017) Lettuce-produced hepatitis C virus E1E2 heterodimer triggers immune responses in mice and antibody production after oral vaccination. Plant Biotechnol J

    Google Scholar 

  • Lyon GM, Mehta AK, Varkey JB, Brantly K, Plyler L, McElroy AK, Kraft CS, Towner JS, Spiropoulou C, Stroher U, Uyeki TM, Ribner BS, U. Emory Serious Communicable Diseases (2014) Clinical care of two patients with Ebola virus disease in the United States. N Engl J Med 371(25): 2402–2409

    Article  PubMed  CAS  Google Scholar 

  • Martin JE, Pierson TC, Hubka S, Rucker S, Gordon IJ, Enama ME, Andrews CA, Xu Q, Davis BS, Nason M, Fay M, Koup RA, Roederer M, Bailer RT, Gomez PL, Mascola JR, Chang GJ, Nabel GJ, Graham BS (2007) A West Nile virus DNA vaccine induces neutralizing antibody in healthy adults during a phase 1 clinical trial. J Infect Dis 196(12):1732–1740

    Article  PubMed  Google Scholar 

  • Martinez CA, Topal E, Giulietti AM, Talou JR, Mason H (2010) Exploring different strategies to express Dengue virus envelope protein in a plant system. Biotechnol Lett 32(6):867–875

    Article  PubMed  CAS  Google Scholar 

  • Medigeshi GR, Hirsch AJ, Brien JD, Uhrlaub JL, Mason PW, Wiley C, Nikolich-Zugich J, Nelson JA (2009) West Nile virus capsid degradation of claudin proteins disrupts epithelial barrier function. J Virol 83(12):6125–6134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Minke JM, Siger L, Karaca K, Austgen L, Gordy P, Bowen R, Renshaw RW, Loosmore S, Audonnet JC, Nordgren B (2004) Recombinant canarypoxvirus vaccine carrying the prM/E genes of West Nile virus protects horses against a West Nile virus-mosquito challenge. Arch Virol Suppl 18:221–230

    Google Scholar 

  • Monath TP, Liu J, Kanesa-Thasan N, Myers GA, Nichols R, Deary A, McCarthy K, Johnson C, Ermak T, Shin S, Arroyo J, Guirakhoo F, Kennedy JS, Ennis FA, Green S, Bedford P (2006) A live, attenuated recombinant West Nile virus vaccine. Proc Natl Acad Sci U S A 103(17):6694–6699

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morens DM (1994) Antibody-dependent of enhancement of infection and the pathogenesis of viral disease. Clin Inf Dis 19:500–512

    Article  CAS  Google Scholar 

  • Ng T, Hathaway D, Jennings N, Champ D, Chiang YW, Chu HJ (2003) Equine vaccine for West Nile virus. Dev Biol (Basel) 114:221–227

    CAS  Google Scholar 

  • Nybakken GE, Oliphant T, Johnson S, Burke S, Diamond MS, Fremont DH (2005) Structural basis of West Nile virus neutralization by a therapeutic antibody. Nature 437(7059):764–769

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ohtaki N, Takahashi H, Kaneko K, Gomi Y, Ishikawa T, Higashi Y, Kurata T, Sata T, Kojima A (2010) Immunogenicity and efficacy of two types of West Nile virus-like particles different in size and maturation as a second-generation vaccine candidate. Vaccine 28(40):6588–6596

    Article  PubMed  CAS  Google Scholar 

  • Oliphant T, Engle M, Nybakken GE, Doane C, Johnson S, Huang L, Gorlatov S, Mehlhop E, Marri A, Chung KM, Ebel GD, Kramer LD, Fremont DH, Diamond MS (2005) Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nat Med 11(5):522–530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pardi N, Weissman D (2017) Nucleoside modified mRNA vaccines for infectious diseases. In: Kramps T, Elbers K (eds) RNA vaccines: methods and protocols. Springer, New York, NY, pp 109–121

    Chapter  Google Scholar 

  • Pelosi A, Shepherd R, Guzman GD, Hamill JD, Meeusen E, Sanson G, Walmsley AM (2011) The release and induced immune responses of a plant-made and delivered antigen in the mouse gut. Curr Drug Deliv 8(6):612–621

    Article  PubMed  CAS  Google Scholar 

  • Pelosi A, Piedrafita D, De Guzman G, Shepherd R, Hamill JD, Meeusen E, Walmsley AM (2012) The effect of plant tissue and vaccine formulation on the oral immunogenicity of a model plant-made antigen in sheep. PLoS ONE 7(12):e52907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peyret H, Lomonossoff GP (2013) The pEAQ vector series: the easy and quick way to produce recombinant proteins in plants. Plant Mol Biol 83(1–2):51–58

    Article  PubMed  CAS  Google Scholar 

  • Peyret H, Lomonossoff GP (2015) When plant virology met Agrobacterium: the rise of the deconstructed clones. Plant Biotechnol J 13(8):1121–1135

    Article  PubMed  PubMed Central  Google Scholar 

  • Phoolcharoen W, Bhoo SH, Lai H, Ma J, Arntzen CJ, Chen Q, Mason HS (2011) Expression of an immunogenic Ebola immune complex in Nicotiana benthamiana. Plant Biotechnol J 9(7):807–816

    Article  PubMed  CAS  Google Scholar 

  • Pinto AK, Richner JM, Poore EA, Patil PP, Amanna IJ, Slifka MK, Diamond MS (2013) A hydrogen peroxide-inactivated virus vaccine elicits humoral and cellular immunity and protects against lethal West Nile virus infection in aged mice. J Virol 87(4):1926–1936

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Poore EA, Slifka DK, Raue HP, Thomas A, Hammarlund E, Quintel BK, Torrey LL, Slifka AM, Richner JM, Dubois ME, Johnson LP, Diamond MS, Slifka MK, Amanna IJ (2017) Pre-clinical development of a hydrogen peroxide-inactivated West Nile virus vaccine. Vaccine 35(2):283–292

    Article  PubMed  CAS  Google Scholar 

  • Qiao M, Ashok M, Bernard KA, Palacios G, Zhou ZH, Lipkin WI, Liang TJ (2004) Induction of sterilizing immunity against West Nile Virus (WNV), by immunization with WNV-like particles produced in insect cells. J Infect Dis 190(12):2104–2108

    Article  PubMed  Google Scholar 

  • Ramanathan MP, Kutzler MA, Kuo YC, Yan J, Liu H, Shah V, Bawa A, Selling B, Sardesai NY, Kim JJ, Weiner DB (2009) Coimmunization with an optimized IL15 plasmid adjuvant enhances humoral immunity via stimulating B cells induced by genetically engineered DNA vaccines expressing consensus JEV and WNV E DIII. Vaccine 27(32):4370–4380

    Article  PubMed  CAS  Google Scholar 

  • Rizzoli A, Jimenez-Clavero MA, Barzon L, Cordioli P, Figuerola J, Koraka P, Martina B, Moreno A, Nowotny N, Pardigon N, Sanders N, Ulbert S, Tenorio A (2015) The challenge of West Nile virus in Europe: knowledge gaps and research priorities. Euro Surveill 20(20)

    Article  PubMed  Google Scholar 

  • Roose K, De Baets S, Schepens B, Saelens X (2013) Hepatitis B core-based virus-like particles to present heterologous epitopes. Expert Rev Vaccines 12(2):183–198

    Article  PubMed  CAS  Google Scholar 

  • Rosales-Mendoza S, Soria-Guerra RE, Moreno-Fierros L, Govea-Alonso DO, Herrera-Diaz A, Korban SS, Alpuche-Solis AG (2011) Immunogenicity of nuclear-encoded LTB:ST fusion protein from Escherichia coli expressed in tobacco plants. Plant Cell Rep 30(6):1145–1152

    Article  PubMed  CAS  Google Scholar 

  • Sabalza M, Christou P, Capell T (2014) Recombinant plant-derived pharmaceutical proteins: current technical and economic bottlenecks. Biotechnol Lett 36(12):2367–2379

    Article  PubMed  CAS  Google Scholar 

  • Saejung W, Fujiyama K, Takasaki T, Ito M, Hori K, Malasit P, Watanabe Y, Kurane I, Seki T (2007) Production of dengue 2 envelope domain III in plant using TMV-based vector system. Vaccine 25(36):6646–6654

    Article  PubMed  CAS  Google Scholar 

  • Santi L, Batchelor L, Huang Z, Hjelm B, Kilbourne J, Arntzen CJ, Chen Q, Mason HS (2008) An efficient plant viral expression system generating orally immunogenic Norwalk virus-like particles. Vaccine 26(15):1846–1854

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sequeira JC, Harrison BD (1982) Serological studies on the cassave latent virus. Ann Appl Biol 101:33–42

    Article  Google Scholar 

  • Shahid N, Daniell H (2016) Plant-based oral vaccines against zoonotic and non-zoonotic diseases. Plant Biotechnol J 14(11):2079–2099

    Article  PubMed  PubMed Central  Google Scholar 

  • Spohn G, Jennings GT, Martina BE, Keller I, Beck M, Pumpens P, Osterhaus AD, Bachmann MF (2010) A VLP-based vaccine targeting domain III of the West Nile virus E protein protects from lethal infection in mice. Virol J 7:146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stettler K, Beltramello M, Espinosa DA, Graham V, Cassotta A, Bianchi S, Vanzetta F, Minola A, Jaconi S, Mele F, Foglierini M, Pedotti M, Simonelli L, Dowall S, Atkinson B, Percivalle E, Simmons CP, Varani L, Blum J, Baldanti F, Cameroni E, Hewson R, Harris E, Lanzavecchia A, Sallusto F, Corti D (2016) Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection. Science 353(6301):823

    Article  PubMed  CAS  Google Scholar 

  • Su J, Sherman A, Doerfler PA, Byrne BJ, Herzog RW, Daniell H (2015a) Oral delivery of acid alpha Glucosidase epitopes expressed in plant chloroplasts suppresses antibody formation in treatment of Pompe mice. Plant Biotechnol J 13(8):1023–1032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Su J, Zhu L, Sherman A, Wang X, Lin S, Kamesh A, Norikane JH, Streatfield SJ, Herzog RW, Daniell H (2015b) Low cost industrial production of coagulation factor IX bioencapsulated in lettuce cells for oral tolerance induction in hemophilia B. Biomaterials 70:84–93

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun H, Chen Q, Lai H (2017) Development of antibody therapeutics against faviviruses. Int J Mol Sci 19(1):54–84. https://doi.org/10.3390/ijms19010054

  • Takeyama N, Kiyono H, Yuki Y (2015) Plant-based vaccines for animals and humans: recent advances in technology and clinical trials. Ther Adv Vaccines 3(5–6):139–154

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor TJ, Diaz F, Colgrove RC, Bernard KA, DeLuca NA, Whelan SP, Knipe DM (2016) Production of immunogenic West Nile virus-like particles using a herpes simplex virus 1 recombinant vector. Virology 496:186–193

    Article  PubMed  CAS  Google Scholar 

  • Tuse D, Tu T, McDonald K (2014) Manufacturing economics of plant-made biologics: case studies in therapeutic and industrial enzymes. BioMed Research International 2014, 10. https://doi.org/10.1155/2014/256135

  • van Marle G, Antony J, Ostermann H, Dunham C, Hunt T, Halliday W, Maingat F, Urbanowski MD, Hobman T, Peeling J, Power C (2007) West Nile virus-induced neuroinflammation: glial infection and capsid protein-mediated neurovirulence. J Virol 81(20):10933–10949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang T, Anderson JF, Magnarelli LA, Wong SJ, Koski RA, Fikrig E (2001) Immunization of mice against West Nile virus with recombinant envelope protein. J Immunol 167(9):5273–5277

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Deng H, Zhang X, Xiao H, Jiang Y, Song Y, Fang L, Xiao S, Zhen Y, Chen H (2009) Generation and immunogenicity of Japanese encephalitis virus envelope protein expressed in transgenic rice. Biochem Biophys Res Commun 380(2):292–297

    Article  PubMed  CAS  Google Scholar 

  • Wilken LR, Nikolov ZL (2012) Recovery and purification of plant-made recombinant proteins. Biotechnol Adv 30(2):419–433

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Anderson R, Hobman TC (2011) The capsid-binding nucleolar helicase DDX56 is important for infectivity of West Nile virus. J Virol 85(11):5571–5580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamshchikov V, Manuvakhova M, Rodriguez E, Hebert C (2017) Development of a human live attenuated West Nile infectious DNA vaccine: Identification of a minimal mutation set conferring the attenuation level acceptable for a human vaccine. Virology 500:122–129

    Article  PubMed  CAS  Google Scholar 

  • Yang JS, Ramanathan MP, Muthumani K, Choo AY, Jin SH, Yu QC, Hwang DS, Choo DK, Lee MD, Dang K, Tang W, Kim JJ, Weiner DB (2002) Induction of inflammation by West Nile virus capsid through the caspase-9 apoptotic pathway. Emerg Infect Dis 8(12):1379–1384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang M, Dent M, Lai H, Sun H, Chen Q (2017a) Immunization of Zika virus envelope protein domain III induces specific and neutralizing immune responses against Zika virus. Vacccine 35(33):4287–4294

    Article  CAS  Google Scholar 

  • Yang M, Lai H, Sun H, Chen Q (2017b) Virus-like particles that display Zika virus envelope protein domain III induce potent neutralizing immune responses in mice. Scientific Reports 7(1):7679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang M, Sun H, Lai H, Hurtado J, Chen Q (2017c) Plant-produced Zika virus envelope protein elicits neutralizing immune responses that correlate with protective immunity against Zika virus in mice. Plant Biotechnol J 16:572–580. https://doi.org/10.1111/pbi.12796

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeller HG, Schuffenecker I (2004) West Nile virus: an overview of its spread in Europe and the Mediterranean basin in contrast to its spread in the Americas. Eur J Clin Microbiol Infect Dis 23(3):147–156

    Article  PubMed  CAS  Google Scholar 

  • Zhao Q, Li S, Yu H, Xia N, Modis Y (2013) Virus-like particle-based human vaccines: quality assessment based on structural and functional properties. Trends Biotechnol 31(11):654–663

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the current and past members of the Chen laboratory, especially Dr. J. He, H. Lai, J. Hurtado, M. Yang, and L. Peng for the data presented in this chapter. The contribution of numerous undergraduate students to the WNV project is also greatly appreciated. We also thank C. Jugler for the critical reading of the chapter. The research relevant to this chapter in the authors’ laboratory was supported in part by NIAID grants number U01 AI075549 and R21/R33 AI101329 to Q. Chen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, H., Chen, Q. (2018). Vaccines Against West Nile Virus. In: MacDonald, J. (eds) Prospects of Plant-Based Vaccines in Veterinary Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-90137-4_5

Download citation

Publish with us

Policies and ethics