Skip to main content

Self-stabilization Through the Lens of Game Theory

  • Chapter
  • First Online:
It's All About Coordination

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10865))

Abstract

In 1974 Dijkstra introduced the seminal concept of self-stabilization that turned out to be one of the main approaches to fault-tolerant computing. We show here how his three solutions can be formalized and reasoned about using the concepts of game theory. We also determine the precise number of steps needed to reach self-stabilization in his first solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abraham, I., Dolev, D., Halpern, J.Y.: Distributed protocols for leader election: a game-theoretic perspective. In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 61–75. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41527-2_5

    Chapter  Google Scholar 

  2. Apt, K.R., de Keijzer, B., Rahn, M., Schäfer, G., Simon, S.: Coordination games on graphs. Int. J. Game Theory 46(3), 851–877 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Apt, K.R., Simon, S.: A classification of weakly acyclic games. Theory Decis. 78(4), 501–524 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Apt, K.R., Simon, S., Wojtczak, D.: Coordination games on directed graphs. In: Proceedings of the 15th Conference on Theoretical Aspects of Rationality and Knowledge (TARK 2015). EPTCS, vol. 215, pp. 67–80 (2016)

    Google Scholar 

  5. Arora, A., Gouda, M.: Closure and convergence: a foundation of fault-tolerant computing. IEEE Trans. Softw. Eng. 19(11), 1015–1027 (1993)

    Article  Google Scholar 

  6. Dasgupta, A., Ghosh, S., Tixeuil, S.: Selfish stabilization. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp. 231–243. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-49823-0_16

    Chapter  Google Scholar 

  7. Dijkstra, E.W.: Self-stabilization in spite of distributed control, October 1973. http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD391.PDF

  8. Dijkstra, E.W.: Self-stabilization with four-state machines, October 1973. http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD392.PDF

  9. Dijkstra, E.W.: Self-stabilization with three-state machines, November 1973. http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD396.PDF

  10. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974)

    Article  MATH  Google Scholar 

  11. Dijkstra, E.W.: Self-stabilization in spite of distributed control. In: Selected Writings on Computing: A Personal Perspective, pp. 41–46. Springer, New York (1982). https://doi.org/10.1007/978-1-4612-5695-3_7

  12. Dijkstra, E.W.: A belated proof of self-stabilization. Distrib. Comput. 1(1), 5–6 (1986). https://www.cs.utexas.edu/users/EWD/ewd09xx/EWD922.PDF

  13. Dolev, S.: Self-stabilization. MIT Press, Cambridge (2000)

    Google Scholar 

  14. Finkbeiner, B., Olderog, E.: Petri games: synthesis of distributed systems with causal memory. Inf. Comput. 253, 181–203 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fokkink, W., Hoepman, J., Pang, J.: A note on \(k\)-state self-stabilization in a ring with \(k=n\). Nord. J. Comput. 12(1), 18–26 (2005)

    MathSciNet  MATH  Google Scholar 

  16. Ghosh, S.: An alternative solution to a problem on self-stabilization. ACM Trans. Program. Lang. Syst. 15(4), 735–742 (1993)

    Article  Google Scholar 

  17. Gouda, M.G.: The theory of weak stabilization. In: Datta, A.K., Herman, T. (eds.) WSS 2001. LNCS, vol. 2194, pp. 114–123. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45438-1_8

    Chapter  Google Scholar 

  18. Halpern, J.Y.: Computer science and game theory: a brief survey. CoRR 2007 (2007). http://arxiv.org/abs/cs/0703148

  19. Halpern, J.Y., Teague, V.: Rational secret sharing and multiparty computation: extended abstract. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing, pp. 623–632. ACM (2004)

    Google Scholar 

  20. Jaggard, A.D., Lutz, N., Schapira, M., Wright, R.N.: Self-stabilizing uncoupled dynamics. In: Lavi, R. (ed.) SAGT 2014. LNCS, vol. 8768, pp. 74–85. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44803-8_7

    Google Scholar 

  21. Lamport, L.: Solved problems, unsolved problems and non-problems in concurrency (invited address). In: Proceedings of the Third Annual ACM Symposium on Principles of Distributed Computing, pp. 1–11 (1984)

    Google Scholar 

  22. Manku, G.S.: A simple proof for \(\cal{O}(n^2)\) convergence of Dijkstra’s self-stabilization protocol (2005, Unpublished)

    Google Scholar 

  23. Milchtaich, I.: Congestion games with player-specific payoff functions. Games Econ. Behav. 13, 111–124 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14, 124–143 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rahn, M., Schäfer, G.: Efficient equilibria in polymatrix coordination games. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9235, pp. 529–541. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48054-0_44

    Chapter  Google Scholar 

  26. Schneider, M.: Self-stabilization. ACM Comput. Surv. 25(1), 45–67 (1993)

    Article  Google Scholar 

  27. Shukla, S.K., Rosenkrantz, D.J., Ravi, S.S., et al.: Observations on self-stabilizing graph algorithms for anonymous networks. In: Proceedings of the Second Workshop on Self-stabilizing Systems, vol. 7, p. 15 (1995)

    Google Scholar 

  28. Simon, S., Wojtczak, D.: Synchronisation games on hypergraphs. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI 2017), pp. 402–408. IJCAI/AAAI Press (2017)

    Google Scholar 

  29. Yen, L.-H., Huang, J.-Y., Turau, V.: Designing self-stabilizing systems using game theory. ACM Trans. Auton. Adapt. Syst. 11(3), 18:1–18:27 (2016)

    Google Scholar 

  30. Young, H.P.: The evolution of conventions. Econometrica 61(1), 57–84 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

We acknowledge useful comments of Mohammad Izadi, Zoi Terzopoulou and Peter van Emde Boas. First author was partially supported by the NCN grant nr 2014/13/B/ST6/01807.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof R. Apt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Apt, K.R., Shoja, E. (2018). Self-stabilization Through the Lens of Game Theory. In: de Boer, F., Bonsangue, M., Rutten, J. (eds) It's All About Coordination. Lecture Notes in Computer Science(), vol 10865. Springer, Cham. https://doi.org/10.1007/978-3-319-90089-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90089-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90088-9

  • Online ISBN: 978-3-319-90089-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics