Skip to main content

Abstract

Now a day’s social networks generate a huge data from user view, emotions, thoughts, opinions, suggestions regarding different products, events, places, brands, politics etc. Those data plays an important role in different ways. Technically, in the interval of every 60 s in a social network like Facebook, lots of comments and statuses are updated which are associated with thousands of contexts. However, realization of different ways in which texts are seems to be appeared on Facebook can help us to improve our products. In general, different organizations such as text organization used sentimental analysis for successful classification. They transpired feelings, emotions in different form like positive, negative, friendly, unfriendly etc. To solve this problem we have concentrated on different techniques of deep learning. In this paper we highlight about few deep learning implementation techniques known as Convolutional Neural Network and Recursive Neural Network with classification of different texts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luo, F., Li, C., Cao, Z. (2016). Affective-feature-based sentiment analysis using SVM classifier. In 2016 IEEE 20th International Conference on Computer Supported Cooperative Work in Design, pp. 276281.

    Google Scholar 

  2. Agarwal, A., Xie, B., Vovsha, I., Rambow, O., & Passonneau, R. (2011). Sentiment analysis of Twitter data. In LSM ‘11 Proceedings of the Workshop on Languages in Social Media, Association for Computational Linguistics (pp. 30–38).

    Google Scholar 

  3. Wilson, T., Wiebe, J., & Hoffman, P. (2005). Recognizing contextual polarity in phrase level sentiment analysis. In Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing (pp. 347–354).

    Google Scholar 

  4. Inside Facebook. http://www.insidefacebook.com/2011/09/21/5000-character-limit-floating-navigation-bar/.

  5. Mueller, J., & Stumme, G. (2017). Predicting rising follower counts on Twitter using profile information. In Proceedings of the 2017 ACM on Web Science Conference (WebSci ‘17) (pp. 121–130). New York, NY, USA: ACM. https://doi.org/10.1145/3091478.3091490.

  6. Karwa, V., Slavković, A. B., & Krivitsky, P. (2014). Differentially private exponential random graphs. In J. Domingo-Ferrer (Eds.), Privacy in statistical databases. PSD 2014. Lecture Notes in Computer Science (Vol. 8744). Cham: Springer.

    Google Scholar 

  7. Farra, N., Challita, E., Abou Assi, R., & Hajj, H. (2010). Sentence-level and document-level sentiment mining for Arabic texts. In Proceedings of the 2010 IEEE International Conference on Data Mining Workshops (ICDMW ‘10) (pp. 1114–1119). Washington, DC, USA: IEEE Computer Society. http://dx.doi.org/10.1109/ICDMW.2010.9510-K Annual Report. SEC Filings. Facebook. January 28, 2017. Retrieved February 3, 2017.

  8. Goller, C., & Kuchler, A. (1996). Learning task-dependent distributed representations by backpropagation through structure. Neural Networks. IEEE. https://doi.org/10.1109/icnn.1996.548916.

  9. Pang, B., & Lee, L. (2004). A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts. In ACL ‘04 Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics (pp. 271–278).

    Google Scholar 

  10. Simard, P. Y., Steinkraus, D., & Platt, J. (2003). Best practices for convolutional neural networks applied to visual document analysis.

    Google Scholar 

  11. Ciresan, D. C., Meier, U., Gambardella, L. M., & Schmidhuber, J. (2010). Deep, big, simple neural nets excel on handwritten digit recognition.

    Google Scholar 

  12. Mullen, T., & Collier, N. (2004). Sentiment analysis using support vector machines with diverse information sources. In Proceedings of Conference on Empirical Methods in Natural Language Processing (pp. 412–418).

    Google Scholar 

  13. Go, A., Bhayani, R., & Huang, L. (2009). Twitter sentiment classification using distant supervision. Stanford: Technical report.

    Google Scholar 

  14. Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up? sentiment classification using machine learning techniques. In Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing (EMNLP ‘02) (vol. 10, pp. 79–86). Stroudsburg, PA, USA: Association for Computational Linguistics. https://doi.org/10.3115/1118693.1118704.

  15. Pak, A., & Paroubek, P. (2010). Twitter as a corpus for sentiment analysis and opinion mining. In Proceedings of the Seventh conference on International Language Resources and Evaluation (LREC’10), Valletta, Malta. European Language Resources Association (ELRA).

    Google Scholar 

  16. Medhat, W., Hassan, A., Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams Engineering Journal, 5(4), 1093–1113. ISSN 2090-4479, https://doi.org/10.1016/j.asej.2014.04.011. Retrieved from http://www.sciencedirect.com/science/article/pii/S2090447914000550.

    Article  Google Scholar 

  17. Neethu, M. S., & Rajasree, R. (2013). Sentiment analysis in twitter using machine learning techniques. In 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT), Tiruchengode, 2013 (pp. 1–5). https://doi.org/10.1109/icccnt.2013.6726818.

  18. Wang, Z., Tong, V. J. C., & Chin, H. C. (2014). Enhancing machine-learning methods for sentiment classification of web data. In A. Jaafar, et al. (Eds.), Information retrieval technology. AIRS 2014. Lecture Notes in Computer Science (Vol. 8870). Cham: Springer.

    Google Scholar 

  19. Gautam, G., & Yadav, D. (2014). Sentiment analysis of twitter data using machine learning approaches and semantic analysis. In 2014 Seventh International Conference on Contemporary Computing (IC3), Noida, 2014 (pp. 437–442). https://doi.org/10.1109/ic3.2014.6897213.

  20. Gupta, M. N., Vishwakarma, K., Rawat, G., Badhani, P. (2017). Study of Twitter sentiment analysis using machine learning algorithms on Python. International Journal of Computer Applications, 165(9), 0975–8887.

    Article  Google Scholar 

  21. Kamal, M. S., Sarowar, M. G., Dey, N., et al. (2017). International Journal of Machine Learning and Cybernetics. https://doi.org/10.1007/s13042-017-0710-8.

    Article  Google Scholar 

  22. Farhana Nimmy, Sonia, Kamal, Sarwar, Iqbal Hossain, Muhammad, Dey, Nilanjan, Amira Ashour, S., & Shi, Fuqian. (2017). Neural Skyline filtering for imbalance features classification. International Journal of Computational Intelligence and Applications, 16, 03.

    Google Scholar 

  23. Kamal, M. S., Chowdhury, L., Ibrahim Khan, M., Ashour, A. S., Tavares, J. M. R. S., & Dey, N. (2017). Hidden Markov Model and Chapman Kolmogrov for Protein Structures Prediction from Images. Computational Biology and Chemistry, 68, 231–244. Elsevier.

    Google Scholar 

  24. Kamal, M. S., Ashour, A. S., & Dey, N. (2017). Large scale medical data mining for accurate diagnosis: A blueprint. In S. U. Khan, A. Y. Zomaya, & A. Abbas (Eds.), Handbook of large-scale distributed computing in smart healthcare. Springer.

    Google Scholar 

  25. Kamal, M. S., Parvin, S., Ashour, A. S., Shi, F., & Dey, N. (2017). De-Bruijn graph with MapReduce framework towards metagenomic data classification. International Journal of Information Technology, 9, 59–75. Springer. http://link.springer.com/article/10.1007/s41870-017-0005-z.

    Article  Google Scholar 

  26. Kamal, M. S., Dey, N., Ashour, A. S., Ripon, S. H., Balas, V. E., & Kaysar, M. S. (2017). FbMapping: An automated system for monitoring Facebook data. Neural Network World, 27, 27–57.

    Article  Google Scholar 

  27. Kamal, M. S., Nimmy, S. F., & Parvin, S. (2016). Performance evaluation comparison for detecting DNA structural break through big data analysis. Computer System Science & Engineering, 31, 275–289.

    Google Scholar 

  28. Kamal, S., Dey, N., Nimmy, S. F., Ripon, S. H., Yousuf Ali, N., Ashour, A. S., et al. (2016). Evolutionary framework for coding area selection from cancer data. Neural Computing and Applications, Springer, 1–23. https://doi.org/10.1007/s00521-016-2513-3.

    Article  Google Scholar 

  29. Chowdhury, L., Ibrahim Khan, M., Deb, K., & Kamal, S. (2016). MetaG: A graph-based Metagenomic gene analysis for big DNA data. Network Modeling Health Informatics and Bioinformatics, 5, 27. https://doi.org/10.1007/s13721-016-0132-7. Springer.

    Article  Google Scholar 

  30. Kamal, M. S., Ripon, S. H., Dey, N., Ashour, A. S., & Santhi, V. (2016). A MapReduce approach to diminish imbalance parameters for big deoxyribonucleic acid dataset. Computer Methods and Programs in Biomedicine, 131, 191–206. Elsevier [SCI Index].

    Article  Google Scholar 

  31. Kamal, M. S., & Nimmy, S. F. (2016). StrucBreak: A computational framework for structural break detection in DNA. Interdisciplinary sciences: Computational life (Vol. 9, pp. 1–16). Springer.

    Google Scholar 

  32. Kamal, S., & Arefin, M. S. (2016). Impact analysis of Facebook in family bonding. Social Network Analysis and Mining (Vol. 6, No. 1). Springer.

    Google Scholar 

  33. Kamal, M. S., Ibrahim Khan, M., Deb, K., Chowdhury, L., & Dey, N. (2016). An optimized graph based metagenomic gene classification approach: Metagenomic gene analysis. In N. Dey, & A. Ashour (Eds.), Classification and clustering in biomedical signal processing (pp. 290–314). Advances in Bioinformatics and Biomedical Engineering (ABBE) Book Series.

    Google Scholar 

  34. Ripon, S., Kamal, M. S., Hossain, S., & Dey, N. (2016). Theoretical analysis of different classifiers under reduction rough data set: A brief proposal. International Journal of Rough Sets and Data Analysis (IJRSDA), 5(1).

    Google Scholar 

  35. Farhana Nimmy, S., & Kamal, M. S. (2015). Next generation sequencing under De-Novo genome assembly. International Journal of Biomathematics, 8(5), 1–29.

    MATH  Google Scholar 

  36. Hossain, M. S., Zander, P.-O., Kamal, M. S., Chowdhury, L. (2015). Belief-rule-based expert systems for evaluation of E-government: A case study. Expert System, 31(4).

    Google Scholar 

  37. Ibrahim Khan, M., Kamal, M. S., & Chowdhury, Linkon. (2015). MSuPDA: A memory efficient algorithm for sequence alignment. Interdisciplinary Sciences: Computational Life Sciences, 7(1), 1–10. Springer.

    Google Scholar 

  38. Kamal, M. S., Xu, S., Farhana Nimmy, S., & Ibrahim Khan, M. (2015). DGPPIsAS: A dynamic global PPIs alignment system. IJCSNS International Journal of Computer Science and Network Security, 15(2), 29–37.

    Google Scholar 

  39. Kamal, M. S., & Ibrahim Khan, M. (2014). Performance evaluation of Warshall algorithm and dynamic programming for markov chain in local sequence alignment. Interdisciplinary Sciences: Computational Life Sciences, 7(1), 78–81. Springer.

    Google Scholar 

  40. Kamal, Sarwar, & Ibrahim Khan, Mohammad. (2014). Chapman-Kolmogorov equations for Global PPIs with Discriminant-EM. International Journal of Biomathematics, 7(4), 1–2.

    MATH  Google Scholar 

  41. Kamal, M. S., & Ibrahim Khan, M. (2014). Memory optimization for global protein network alignment using pushdown automata and de Bruijn graph based Bloom filter. Journal of Software, 9(10).

    Google Scholar 

  42. Kamal, M. S., & Ibrahim Khan, M. (2014). An integrated algorithm for local sequence alignment. Network Modeling Analysis in Health Informatics and Bioinformatics, 3(1), 68.

    Article  Google Scholar 

  43. Ibrahim Khan, M., & Kamal, M. S. (2013). Sequencing ontology alignment for DNA annotation and damage identification. European Journal of Scientific Research, 103(3), 441–450. ISSN: 1450-216X/1450-202X.

    Google Scholar 

  44. Kamal, Sarwar, & Farhana Nimmy, Sonia. (2013). New algorithm to inspect adenoids. International Journal of Computer Applications, 43, 6–13.

    Google Scholar 

  45. Kamal, M. S., Farhana Nimmy, S., & Chowdhury, L. (2012). Vagueness anlaysis towards adenoids inspections. International Journal of Physical and Social Sciences, 2(6), 475–495. http://www.ijmra.us. ISSN: 2249-5894.

  46. Kamal, M. S., Parvin, S., Saleem, K., Al-Hamadi, H., & Gawanmeh, A. (2017). Efficient low cost supervisory system for Internet of Things enabled smart home. In Proceedings of the ICC2017: WT04-5th IEEE International Workshop on Smart Communication Protocols and Algorithms (SCPA 2017), Paris, France.

    Google Scholar 

  47. Kamal, M. S., Farhana Nimmy, S., Hossain, M. I., Dey, N., Ashour, A. S., Sathi, V. (2016). ExSep: An exon separation process using neural skyline filter. In International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT).

    Google Scholar 

  48. Moustafa, M. N., & Chowdhury, L., & Kamal, M. S. (2012). Student dropout prediction for intelligent system from tertiary level in developing country. IEEE Digital Library.

    Google Scholar 

  49. Zhang, Y., Er, M. J., Wang, N., Pratama, M., & Venkatesan, R. (2016). Sentiment classification using comprehensive attention recurrent models (pp. 15621569).

    Google Scholar 

  50. Vateekul, P., & Koomsubha, T. (2016). A study of sentiment analysis using deep learning techniques on Thai Twitter Data.

    Google Scholar 

  51. Socher, R., & Lin, C. (2011). Parsing natural scenes and natural language with recursive neural networks. In Proceedings (pp. 129136).

    Google Scholar 

  52. LeCun, Y., et al. (1998). Gradient-based learning applied to document recognition. In Proceedings of the IEEE 86.11, 2278–2324.

    Article  Google Scholar 

  53. Severyn, A., & Moschitti, A. (2015). Twitter sentiment analysis with deep convolutional neural networks. In: Proceedings of the 38th International ACM SIGIR Confernce on Research and Development in Information Retrieval- SIGIR 15, pp. 959962.

    Google Scholar 

  54. Socher, R., Perelygin, A., Wu, J. Y., Chuang, J., Manning, C. D., Ng, A. Y., et al. (2017). Recursive deep models for semantic compositionality over a sentiment Treebank. Stanford University, Stanford, CA 94305, USA.

    Google Scholar 

  55. http://www.internetlivestats.com/twitter-statistics/.

  56. Li, C., Xu, B., Wu, G., He, S., Tian, G., & Hao, H. (2014). Recursive deep learning for sentiment analysis over social data. Proceedings 2014 IEEE/WIC/ACM International Joint Conference on Web Intelligence, Intelligent Agent Technology—Work. WI IAT 2014, (vol. 2, pp. 13881429).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarwar Kamal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rahman, L., Sarowar, G., Kamal, S. (2018). Teenagers Sentiment Analysis from Social Network Data. In: Dey, N., Babo, R., Ashour, A., Bhatnagar, V., Bouhlel, M. (eds) Social Networks Science: Design, Implementation, Security, and Challenges . Springer, Cham. https://doi.org/10.1007/978-3-319-90059-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90059-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90058-2

  • Online ISBN: 978-3-319-90059-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics