Skip to main content

Region-Aware Route Planning

  • Conference paper
  • First Online:
Web and Wireless Geographical Information Systems (W2GIS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10819))

Abstract

We consider route planning queries in road or path networks which involve a user preference expressed in relation to a spatial region, as e.g. ‘from Nanjing to Shanghai along Yangtze river’ or ‘from home to work through Central Park’. To answer such queries, we carefully define relevant subgraphs of the network for each region-of-interest and guide the route towards them. To extract these subgraphs, we need to solve several non-trivial geometric problems (as computing weak visibility regions), which require to interpret the embedded network both as a graph and as an arrangement of line segments. We describe a suitable preprocessing framework, taking the special structure of road networks into account to increase its performance. Our query answering algorithm then allows to trade detour length against time spent within or close to the desired region. Using acceleration techniques, region-aware routes can be planned efficiently even in networks with millions of edges, and also when considering large or complex regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 60.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Directed networks can also be handled with minor modifications. We restrict ourselves to undirected graphs here for a cleaner exposition of the algorithms.

  2. 2.

    openstreetmap.org.

References

  1. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: Alternative routes in road networks. J. Exp. Algorithm. 18, 1.3:1.1–1.3:1.17 (2013)

    Article  MathSciNet  Google Scholar 

  2. Eisner, J., Funke, S.: Sequenced route queries: getting things done on the way back home. In: Proceedings of the 20th International Conference on Advances in Geographic Information Systems, pp. 502–505. ACM (2012)

    Google Scholar 

  3. Funke, S., Storandt, S.: Personalized route planning in road networks. In: Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, p. 45. ACM (2015)

    Google Scholar 

  4. Dibbelt, J., Strasser, B., Wagner, D.: Fast exact shortest path and distance queries on road networks with parametrized costs. In: Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, p. 66. ACM (2015)

    Google Scholar 

  5. Funke, S., Storandt, S.: Personal routes with high-dimensional costs and dynamic approximation guarantees. In: Proceedings of the 16th International Symposium on Experimental Algorithms

    Google Scholar 

  6. Gemsa, A., Pajor, T., Wagner, D., Zündorf, T.: Efficient computation of jogging routes. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933, pp. 272–283. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38527-8_25

    Chapter  Google Scholar 

  7. Bast, H., Sternisko, J., Storandt, S.: ForestMaps: a computational model and visualization for forest utilization. In: Pfoser, D., Li, K.-J. (eds.) W2GIS 2013. LNCS, vol. 8470, pp. 115–133. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55334-9_8

    Chapter  Google Scholar 

  8. Kobitzsch, M., Radermacher, M., Schieferdecker, D.: Evolution and evaluation of the penalty method for alternative graphs. In: ATMOS-13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems-2013, vol. 33, pp. 94–107. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2013)

    Google Scholar 

  9. Luxen, D., Schieferdecker, D.: Candidate sets for alternative routes in road networks. J. Exp. Algorithm. (JEA) 19, 2–7 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Geisberger, R., Rice, M.N., Sanders, P., Tsotras, V.J.: Route planning with flexible edge restrictions. J. Exp. Algorithm. (JEA) 17, 1–2 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Gajentaan, A., Overmars, M.H.: On a class of \(O(n^2)\) problems in computational geometry. Comput. Geom. 5(3), 165–185 (1995)

    Article  MathSciNet  Google Scholar 

  12. Nouri, M., Zarei, A., Ghodsi, M.: Weak visibility of two objects in planar polygonal scenes. In: Gervasi, O., Gavrilova, M.L. (eds.) ICCSA 2007. LNCS, vol. 4705, pp. 68–81. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74472-6_6

    Chapter  Google Scholar 

  13. Ghosh, S.K., Mount, D.M.: An output-sensitive algorithm for computing visibility graphs. SIAM J. Comput. 20(5), 888–910 (1991)

    Article  MathSciNet  Google Scholar 

  14. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.C.: Computational geometry. In: Computational Geometry, pp. 1–17. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-662-04245-8_1

  15. Overmars, M.H., Welzl, E.: New methods for computing visibility graphs. In: Proceedings of the Fourth Annual Symposium on Computational Geometry, pp. 164–171. ACM (1988)

    Google Scholar 

  16. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: faster and simpler hierarchical routing in road networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68552-4_24

    Chapter  Google Scholar 

  17. Delling, D., Goldberg, A.V., Werneck, R.F.: Faster batched shortest paths in road networks. In: OASIcs-OpenAccess Series in Informatics, vol. 20. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2011)

    Google Scholar 

  18. Delling, D., Goldberg, A.V., Nowatzyk, A., Werneck, R.F.: Phast: hardware-accelerated shortest path trees. J. Parallel Distrib. Comput. 73(7), 940–952 (2013)

    Article  Google Scholar 

  19. Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing in large road networks using contraction hierarchies. Transp. Sci. 46(3), 388–404 (2012)

    Article  Google Scholar 

  20. Heidi, M.: Heuristics for the generation of random polygons*. In: Canadian Conference on Computational Geometry, vol. 5, p. 38. McGill-Queen’s Press-MQUP (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Storandt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Storandt, S. (2018). Region-Aware Route Planning. In: R. Luaces, M., Karimipour, F. (eds) Web and Wireless Geographical Information Systems. W2GIS 2018. Lecture Notes in Computer Science(), vol 10819. Springer, Cham. https://doi.org/10.1007/978-3-319-90053-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90053-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90052-0

  • Online ISBN: 978-3-319-90053-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics