Skip to main content

Electric Field and Current

  • Chapter
  • First Online:
Characterizing Space Plasmas

Part of the book series: Astronomy and Astrophysics Library ((AAL))

Abstract

One of the most important discoveries made in space plasma physics is the existence of electric field parallel to the direction of the magnetic field, E . Hannes Alfvén developed an auroral model in 1939 predicting existence of electric fields directed along the magnetic field B driving a field-aligned current (FAC), J . But it was not until 1960 that the first evidence of E was obtained. Electron beams were observed moving earthward along the geomagnetic field to produce the aurora while the ions moved outward in the opposite direction. These beams are produced when thermal particles are accelerated by E along B. The electron and ion beams are part of the global auroral current system induced by the solar wind interaction with the magnetosphere. We have since learned that all of the dynamics associated with the aurora can be organized within the framework of the global current systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akasofu, S.-I.: Polar and Magnetospheric Substorms. Springer, New York (1968)

    Google Scholar 

  • Albert, R.: Nearly monoenergetic electron fluxes detected during a visible aurora. Phys. Rev. Lett. 18, 369 (1967)

    Article  ADS  Google Scholar 

  • Alfvén, H., Fälthammar, C.-G.: Cosmical Electrodynamics: Fundamental Principles, 2nd edn. Oxford University Press, Oxford (1963)

    Google Scholar 

  • Allen, W.: Ponderomotive mass transport in the magnetosphere. J. Geophys. Res. 97, 8483 (1992)

    Article  ADS  Google Scholar 

  • Baker, D., et al.: Highly relativistic radiation belt electron acceleration, transport, and loss: large solar storm events of March and June 2015. J. Geophys. Res. 121, 6647 (2016)

    ADS  Google Scholar 

  • Bernstein, I., Green, J.M., Kruskal, M.D.: Exact nonlinear plasma oscillations. Phys. Rev. Lett. 108, 546 (1957)

    Article  ADS  MATH  Google Scholar 

  • Berko, F., et al.: Protons as the prime contributors to storm time ring current. J. Geophys. Res. 80, 3549 (1975)

    Article  ADS  Google Scholar 

  • Block, L.: A double layer review. Astrophys. Space Sci. 55, 59 (1978)

    Google Scholar 

  • Borovosky, J.: Parallel electric fields in extragalactic jets: double layers and anomalous resistivity in symbiotic relationships. Astrophys. J. 305, 451 (1986)

    Google Scholar 

  • Boström, R.: Electrodynamics of the ionosphere. In: Egeland, A., Holter, O., Omholt, A. (eds.) Cosmic Electrodynamics. Scandinavian University Books, Oslo (1973)

    Google Scholar 

  • Cahill, L., Amazeen, P.: The boundary of the geomagnetic field. J. Geophys. Res. 68, 1835 (1963)

    Article  ADS  Google Scholar 

  • Calqvist, P., Boström, R.: Space-charge region about the aurora. J. Geophys. Res. 75, 7140 (1970)

    Article  ADS  Google Scholar 

  • Caravillano, R., Maguire, J.: Magnetic energy relationships in the magnetosphere. In: Carovillano, R., McClay, J., Radoski, H. (eds.) Physics of the Magnetosphere. D. Reidel Publishing/Co., Dordrecht (1968)

    Google Scholar 

  • Cardoso, F., et al.: Auroral precipitating energy during long magnetic storms. J. Geophys. Res. 122, 6007 (2017)

    ADS  Google Scholar 

  • Carlson, C., Pfaff, R.F., Watzin, J.G.: The fast auroral snapshot (FAST) mission. Geophys. Res. Lett. 25, 2013 (1998)

    Article  ADS  Google Scholar 

  • Chaston, C., et al.: Radial transport of radiation belt electrons in kinetic field-line resonances. Geophys. Res. Lett. 44, 8140 (2017)

    Article  ADS  Google Scholar 

  • Chua, D., Brittnacher, M., Parks, G., et al.: A new auroral feature “The nightside gap”. Geophys. Res. Lett. 25, 3747 (1998)

    Article  ADS  Google Scholar 

  • Cornwall, J., et al.: Unified theory of SAR arc formation at the plasmapause. J. Geophys. Res. 76, 4428 (1971)

    Article  ADS  Google Scholar 

  • Cui, Y.B., Fu, S.Y., Parks, G.K.: Heating of ionospheric ion beams in inverted-V structures. Geophys. Res. Lett. 41, 3752 (2014)

    Article  ADS  Google Scholar 

  • Cummings, W.D., Dessler, A.J.: Field-aligned currents in the magnetosphere. J. Geophys. Res. 72, 1007 (1967)

    Article  ADS  Google Scholar 

  • Dandouras, I.: Detection of a plasmaspheric wind in the Earth’s magnetosphere by the Cluster spacecraft. Ann. Geophys. 31, 1143 (2013)

    Article  ADS  Google Scholar 

  • Delory, G., et al.: FAST observations of electron distributions within AKR source regions. Geophys. Res. Lett. 25, 2065 (1998)

    Article  ADS  Google Scholar 

  • Dreicer, H.: Electron and ion runaway in fully ionized gases, I. Phys. Rev. 115, 238 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Eack, K., et al.: X-ray pulses observed above a mesoscale convective system. Geophys. Res. Lett. 23, 2915 (1996)

    Article  ADS  Google Scholar 

  • Ergun, R., et al.: Parallel electric fields in discrete arcs. Geophys. Res. Lett. 27, 4053 (2000)

    Article  ADS  Google Scholar 

  • Ergun, R., et al.: Observations of double layers in Earth’s plasma sheet. Phys. Rev. Lett. 102, 155002 (2009)

    Google Scholar 

  • Evans, D.: Precipitating electron fluxes formed by a magnetic field aligned potential difference. J. Geophys. Res. 79, 2853 (1974)

    Article  ADS  Google Scholar 

  • Fok, M.-C., et al.: The comprehensive inner magnetosphere-ionosphere model. J. Geophys. Res. 119, 7522 (2014)

    ADS  Google Scholar 

  • Frank, L.: On the extraterrestrial ring current during geomagnetic storms. J. Geophys. Res. 72, 3753 (1967)

    Article  ADS  Google Scholar 

  • Frank, L., Ackerson, K.: Observations of charged particle precipitation into the auroral zone. J. Geophys. Res. 76, 3612 (1971)

    Article  ADS  Google Scholar 

  • Giovanelli, R.: Electron energies resulting from an electric field in a highly ionized gas. J. Sci. 40(301), 206 (1949)

    Google Scholar 

  • Goertz, C.: Double layers and electrostatic shocks in space. Rev. Geophys. Space Phys. 17, 418 (1979)

    Article  ADS  Google Scholar 

  • Guglielmi, A.V., et al.: Modifications of magnetospheric plasma due to ponderomotive force. Astrophys. Space Sci. 200, 91 (1993)

    Google Scholar 

  • Gurevich, A.V., Zybin, K.P.: Runaway breakdown and the mysteries of lightning. Phys. Today 58, 37 (2005)

    Article  ADS  Google Scholar 

  • Haerendel, G., et al.: First observations of electrostatic acceleration of barium ions into the magnetosphere. In: European Programmes on Sounding Rockets and Balloon Research in the Auroral Zone, p. 203. ESA Special Publications, ESA SP-115, Paris (1976)

    Google Scholar 

  • Hanasaz, J.: Wideband bursts of auroral kilometric radiation and their association with UV auroral bulges. J. Geophys. Res. 106, 3859 (2001)

    Article  Google Scholar 

  • Horwitz, J.: Core plasma in the magnetosphere. Rev. Geophys. 25, 579 (1987)

    Article  ADS  Google Scholar 

  • Hudson, M., Potter, D.: Electrostatic shocks in the auroral magnetosphere. In: Akasofu, A.I., Kan, J.R. (eds.) Physics of Auroral Arc Formation, p. 260. American Geophysical Union, Washington, DC (1981)

    Chapter  Google Scholar 

  • Ieda, A., et al.: Plasmoid ejection and auroral brightenings. J. Geophys. Res. 106, 3845 (2001)

    Article  Google Scholar 

  • Iijima, T., Potemera, T.: The amplitude distribution of field-aligned currents at northern high latitudes observed by triad. J. Geophys. Res. 81, 2165 (1976)

    Article  ADS  Google Scholar 

  • Iijima, T., Potemera, T.: Large-scale characteristics of field-aligned currents associated with substorms. J. Geophys. Res. 83, 599 (1978)

    Article  ADS  Google Scholar 

  • Kamide, Y.: Magnetic storms: current understanding and outstanding questions. In: Magnetic Storms. Geophysical Monographs, vol. 98. American Geophysical Union, Washington, DC (1997)

    Google Scholar 

  • Kaufmann, R.L.: Acceleration of auroral electrons in parallel electric fields. J. Geophys. Res. 81, 1672 (1976)

    Article  ADS  Google Scholar 

  • Kim, K., et al.: Large electric field at the nightside plasmapause observed by the polar spacecraft. J. Geophys. Res. 115, A07219 (2010)

    Google Scholar 

  • Kistler, L., et al.: Ion composition and pressure changes in storm time and nonstorm substorms in the vicinity of the near-Earth neutral line. J. Geophys. Res. 111, A11222 (2006)

    Google Scholar 

  • Kochkin, P., et al.: Experimental study on hard X-rays emitted from metre-scale negative discharges in air. J. Phys. D: Appl. Phys. 48, 025205 (2015)

    Article  ADS  Google Scholar 

  • Kozyra, J.: High-altitude energy sources for stable auroral red arcs. Rev. Geophys. 35, 155 (1997)

    Article  ADS  Google Scholar 

  • Landau, L., Lifshitz, E.: The Classical Theory of Fields. Pergamon, Oxford (1962)

    Google Scholar 

  • Le, G., et al.: Global observations of magnetospheric high-m poloidal waves during the 22 June 2015 magnetic storm. Geophys. Res. Lett. 44, 3456 (2017)

    Article  ADS  Google Scholar 

  • Lee, N.C., Parks, G.K.: Ponderomotive acceleration of ions by circularly polarized electromagnetic waves. Geophys. Res. Lett. 23, 327 (1996)

    Article  ADS  Google Scholar 

  • Lee, E., Parks, G.K., Fu, S.Y., et al.: Relating field-aligned beams to inverted-V structures and visible auroras. Ann. Geophys. 33, 1 (2015)

    Article  ADS  Google Scholar 

  • Li, X., Temerin, M.: Ponderomotive effects on ion acceleration in the auroral zone. Geophys. Res. Lett. 20, 13 (1993)

    Article  ADS  Google Scholar 

  • Lin, C., Parks, G.K.: Modulation of energetic particle fluxes by a mixed mode of transverse and compressional waves. J. Geophys. Res. 87, 5102 (1982)

    Article  Google Scholar 

  • Liu, W.W., et al.: On the equatorward motion and fading of proton aurora during substorm growth phase. J. Geophys. Res. 112, A10217 (2007)

    Article  Google Scholar 

  • Lotko, W.: Inductive magnetosphere-ionosphere coupling. J. Atmos. Sol. Terr. Phys. 66, 1433 (2004)

    Article  ADS  Google Scholar 

  • Lotko, W., et al.: Electrostatic shocks and suprathermal electrons powered by dispersive anomalously resistive field line resonance. Geophys. Res. Lett. 25, 4449 (1998)

    Article  ADS  Google Scholar 

  • Louarn, P., et al.: Trapped electrons as a free energy source for the auroral kilometric radiation. J. Geophys. Res. 95, 5938 (1990)

    Article  ADS  Google Scholar 

  • Lundin, R., Guglielmi, A.: Ponderomotive forces in cosmos. Space Sci. Rev. 127, 1 (2006)

    Article  ADS  Google Scholar 

  • Lui, A.T.Y.: A synthesis of magnetospheric substorm models. J. Geophys. Res. 96, 1849 (1991)

    Article  Google Scholar 

  • Lysak, R.: The relationship between electrostatic shocks and kinetic Alfvén waves. Geophys. Res. Lett. 25, 2089 (1998)

    Article  ADS  Google Scholar 

  • Marklund, G., et al.: Altitude distribution of the auroral acceleration potential determined from Cluster satellite data at different heights. Phys. Rev. Lett. 106, 055002 (2011)

    Google Scholar 

  • Mauk, B.: Generation of macroscopic magnetic-field-aligned electric fields by the convection surge ion acceleration mechanism. J. Geophys. Res. 94, 8911 (1989)

    Article  ADS  Google Scholar 

  • McCarthy, M.C., Parks, G.K.: Further observations of X-rays inside thunderstorms. Geophys. Res. Lett. 12, 393 (1985)

    Article  ADS  Google Scholar 

  • McFadden, J., et al.: Spatial structure and gradients of ion beams observed by FAST. Geophys. Res. Lett. 25, 2021 (1998)

    Article  ADS  Google Scholar 

  • McIlwain, C.E.: Direct measurements of particles producing aurora. J. Geophys. Res. 65, 2727 (1960)

    Article  ADS  Google Scholar 

  • Melrose, D.: Coherent emission mechanisms in astrophysical plasmas. Rev. Mod. Plasma Phys. 1, 5 (2017)

    Google Scholar 

  • Moore, T.W., et al.: Cross-scale energy transport in space plasmas. Nat. Phys. 12, 1164–1169 (2016)

    Article  ADS  Google Scholar 

  • Morioka, A., et al.: AKR breakup and auroral particle acceleration at substorm onset. J. Geophys. Res. 113, A09213 (2008)

    Article  Google Scholar 

  • Murphy, C.H., Wang, C.S., Kim, J.S.: Inductive electric field of a field-aligned current system. J. Geophys. Res. 79, 2901 (1974)

    Article  ADS  Google Scholar 

  • Nicholson, D.: Introduction to Plasma Theory, p. 115. Wiley, New York (1983)

    Google Scholar 

  • Nykyri, K., Dimmock, A.: Statistical study of the ULF Pc4-Pc5 range fluctuations in the vicinity of Earth’s magnetopause and correlation with the low latitude boundary layer thickness. Adv. Space Res. 58, 257 (2015)

    Article  ADS  Google Scholar 

  • O’Brien, B., Taylor, H.: High-latitude geophysical studies with satellite injun 3; 4. Auroras and their excitation. J. Geophys. Res. 69, 45 (1964)

    Article  ADS  Google Scholar 

  • Oreshkin, E.V., et al.: Parameters of a runaway electron avalanche. Phys. Plasmas 24, 103505 (2017)

    Article  ADS  Google Scholar 

  • Panaysuk, M., et al.: Magnetic storms in October 2003. Cosm. Res. 42, 489 (2004)

    Google Scholar 

  • Parks, G.K.: Physics of Space Plasmas, An Introduction, 2nd edn. Westview Press, A Member of Perseus Books Group, Boulder (2004)

    Google Scholar 

  • Parks, G.K., et al.: X-ray enhancements detected during thunderstorm and lightning activities. Geophys. Res. Lett. 8, 1176 (1981)

    Article  ADS  Google Scholar 

  • Patel, V.L.: Low frequency hydromagnetic waves in the magnetosphere: explorer 12. Planet. Space Sci. 13, 485 (1965)

    Google Scholar 

  • Rees, M., Roble, R.: Observations and theory of the formation of stable auroral red arcs. Rev. Geophys. Space Phys. 13, 201 (1975)

    Article  ADS  Google Scholar 

  • Reeves, G., et al.: On the relationship between relativistic electron flux and solar wind velocity: Paulikas and Blake revisited. J. Geophys. Res. 116, A02213 (2011)

    Article  Google Scholar 

  • Sandel, B.R., et al.: Extreme ultraviolet imager observations of the structure and dynamics of the plasmasphere. Space Sci. Rev. 109, 25 (2003)

    Article  ADS  Google Scholar 

  • Schulz, M., Lanzerotti, L.: Particle Diffusion in the Radiation Belts. Physics and Chemistry in Space. Berlin, Springer (1974)

    Chapter  Google Scholar 

  • Sergeev, V., et al.: Current sheet flapping motion and structure observed by Cluster. J. Geophys. Res. 30, 1327 (2003)

    Google Scholar 

  • Shelley, E., et al.: Satellite observations of ionospheric acceleration mechanism. Geophys. Res. Lett. 3, 654 (1976)

    Article  ADS  Google Scholar 

  • Shi, J.K., et al.: South-north asymmetry of field-aligned currents in the magnetotail observed by Cluster. J. Geophys. Res. 115, A07228 (2010)

    Google Scholar 

  • Smith, D., et al.: The rarity of terrestrial gamma-ray flashes. Geophys. Res. Lett. 38, L08807 (2011)

    Google Scholar 

  • Spasojevic, M., et al.: The global response of the plasmasphere to the geomagnetic disturbance. J. Geophys. Res. 70, 1717 (2003)

    Google Scholar 

  • Stevenson, B., et al.: Polar observations of topside field-aligned O+ flows and auroral forms. J. Geophys. Res. 106, 18969 (2001)

    Article  Google Scholar 

  • Sun, W.J., Fu, S.Y., Parks, G.K., et al.: Field-aligned currents associated with dipolarization fronts. Geophys. Res. Lett. 40, 4503 (2013)

    Article  ADS  Google Scholar 

  • Sun, W.-J., et al.: MESSENGER observations of magnetospheric substorm activity in Mercury’s near magnetotail. Geophys. Res. Lett. 42, 3692 (2015)

    Article  ADS  Google Scholar 

  • Stern, D.: One dimensional models of quasi-neutral parallel electric fields. J. Geophys. Res. 86, 5839 (1981)

    Article  ADS  Google Scholar 

  • Tetreaualt, D.: Growing ion holes as the cause of auroral double layers. Geophys. Res. Lett. 15, 164 (1988)

    Article  ADS  Google Scholar 

  • Turikov, V.A.: Electron phase-space holes as localized BGK solutions. Phys. Scr. 30, 73 (1984)

    Article  ADS  Google Scholar 

  • Whipple, E.: The signature of parallel electric fields in a collisionless plasma. J. Geophys. Res. 82, 1525 (1977)

    Article  ADS  Google Scholar 

  • Wu, C.S., Lee, L.: A theory of terrestrial kilometric radiation. Astrophys. J. 230, 621 (1965)

    Google Scholar 

  • Yau, A., André, M.: Sources of ion outflow in the high latitude ionosphere. Space Sci. Rev. 80, 1 (1997)

    Google Scholar 

  • Zheng, H., Fu, S.Y., et al.: Observations of ionospheric electron beams in the plasma sheet. Phys. Rev. Lett. 109, 205001 (2012)

    Google Scholar 

  • Zmuda, A., et al.: Transverse magnetic disturbances at 1100 kilometers in the auroral region. J. Geophys. Res. 71, 5033 (1966)

    Article  ADS  Google Scholar 

  • Zong, Q., et al.: The interaction of ultra-low-frequency pc3-5 waves with charged particles in Earth’s magnetosphere. Rev. Mod. Plasma Phys. 1, 10 (2017)

    Google Scholar 

Additional Reading

  • Alfvén, H.: Kgl. Svenska Vetenskapsakad. Handl. 18(3) (1939)

    Google Scholar 

  • Alfvén, H.: On the importance of electric fields in the magnetosphere and interplanetary space. Space Sci. Rev. 7, 140 (1967)

    Google Scholar 

  • Andersson, L., Ergun, R.: The search for double layers. In: Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets. Geophysical Monograph Series, vol. 197. American Geophysical Union, Washington, DC (2012)

    Chapter  Google Scholar 

  • André, M., et al.: Ion energization mechanisms at 1700 km in the auroral region. J. Geophys. Res. 103, 4199 (1998)

    Article  Google Scholar 

  • Arnoldy, R., et al.: Field-aligned auroral electron fluxes. J. Geophys. Res. 79, 4208 (1974)

    Article  ADS  Google Scholar 

  • Block, L., Falthämmar, C.-G.: The role of magnetic field aligned electric fields in auroral acceleration. J. Geophys. Res. 95, 5877 (1990)

    Article  ADS  Google Scholar 

  • Boström, R., et al.: Characteristics of solitary waves and weak double layers in the magnetospheric plasma. Phys. Rev. Lett. 61, 82 (1988)

    Article  ADS  Google Scholar 

  • Bryant, D., Courtier, G.M.: Electrostatic double layers as auroral particle accelerators - a problem. Ann. Geophys. 33, 481 (2015)

    Article  ADS  Google Scholar 

  • Cardoso, F.: Auroral electron precipitating energy input estimate during magnetic storms with peculiar long recovery phase features. Doctorate Thesis submitted to INPE, Sãn José (2010)

    Google Scholar 

  • Cloutier, P.A., Anderson, H.R.: Observations of birkeland currents. Space Sci. Rev. 17, 563 (1975)

    Article  ADS  Google Scholar 

  • Dessler, A., The evolution of arguments regarding the existence of field-aligned currents. In: Potemera, T.A. (ed.) Magnetospheric Currents. Geophysical Monograph, vol. 28. American Geophysical Union, Washington, DC (1983)

    Google Scholar 

  • Fälthammer, C.-G.: Problems related to macroscopic electric fields in the magnetosphere. Astrophys. Space Sci. 55, 179 (1978)

    Article  ADS  Google Scholar 

  • Fillingim, M., et al.: Coincident POLAR/UVI and WIND observations of pseudobreakups. Geophys. Res. Lett. 27, 1379 (2000)

    Article  ADS  Google Scholar 

  • Gurnett, D.: Electric field and plasma observations in the magnetosphere. In: Dyer, E.R. (ed.) Critical Problems of Magnetospheric Physics, p. 123. National Academy of Sciences, Washington, DC (1972)

    Google Scholar 

  • Hwang, K.-L., et al.: Test particle simulations of the effect of moving DLs on ion outflow in the auroral downward current region. J. Geophys. Res. 113, A01308 (2008)

    Article  ADS  Google Scholar 

  • Lennartson, W.: On the consequences of the interaction between the auroral plasma and the geomagnetic field. Planet. Space Sci. 28, 135 (1980)

    Article  ADS  Google Scholar 

  • Lin, Y., et al.: Investigation of storm time magnetotail and ion injection using three-dimensional global hybrid simulation. J. Geophys. Res. 119, 7413 (2014)

    Article  Google Scholar 

  • Lysak, R.L.: Electrodynamic coupling of the magnetosphere and ionosphere. Space Sci. Rev. 52, 33 (1990)

    Article  ADS  Google Scholar 

  • Melrose, D.: An interpretation of Jupiter’s decametric and the terrestrial kilometric radiation as direct amplified gyroemission. Astrophys. J. 207, 651 (1976)

    Article  ADS  Google Scholar 

  • Mizera, P.F., Fennell, J.F.: Signatures of electric fields from high and low altitude particle distributions. Geophys. Res. Lett. 4, 311 (1977)

    Article  ADS  Google Scholar 

  • Mozer, F., Hull, A.: Origin and geometry of upward parallel electric fields in the auroral acceleration region. J. Geophys. Res. 106, 5763 (2001)

    Article  ADS  Google Scholar 

  • Mozer, F., Kletzing, C.A.: Direct observations of large, quasi-static parallel electric fields in the auroral acceleration region. Geophys. Res. Lett. 25, 1629 (1998)

    Article  ADS  Google Scholar 

  • Mozer, F., et al.: Observations of paired electrostatic shocks in the polar ionosphere. Phys. Rev. Lett. 38, 297 (1977)

    Article  ADS  Google Scholar 

  • Østgaard, N, et al.: Observations and model predictions of substorm auroral asymmetries in the conjugate hemispheres. Geophys. Res. Lett. 32, L05111 (2005)

    ADS  Google Scholar 

  • Parks, G.K., Lee, E., Fu, S., et al.: Outflow of low-energy O + ion beams observed during periods without substorms. Ann. Geophys. 33, 333 (2015)

    Article  ADS  Google Scholar 

  • Potemera, T.A.: Observation of birkeland currents with the TRIAD satellite. Astrophys. Space Sci. 58, 1 (1978)

    Google Scholar 

  • Potemra, T.A.: Birkeland currents in the Earth’s magnetosphere. Astrophys. Space Sci. 144, 155 (1988)

    ADS  Google Scholar 

  • Reiff, P., et al.: Determination of auroral electrostatic potentials using high and low altitude particle distributions. J. Geophys. Res. 93, 7441 (1988)

    Article  ADS  Google Scholar 

  • Shawhan, S., et al.: On the nature of large auroral zone electric fields at 1 RE altitude. J. Geophys. Res. 83, 1049 (1978)

    Article  ADS  Google Scholar 

  • Stevenson, B.A.: Relationship of O+ field-aligned flows and densities to convection speed in the polar cap at 5000 km altitude. J. Atmos. Sol. Terr. Phys. 62, 495 (2000)

    Article  ADS  Google Scholar 

  • Temerin, M., et al.: Observations of double layers and solitary waves in the auroral plasma. Phys. Rev. Lett. 48, 1175 (1982)

    Article  ADS  Google Scholar 

  • Tetreault, D.: Theory of electric fields in the auroral acceleration region. J. Geophys. Res. 96, 3549 (1991)

    Article  ADS  Google Scholar 

  • Wescott., E.M., et al.: The Skylab barium plasma injection experiments, 2. Evidence for double layer. J. Geophys. Res 81, 4495 (1976)

    Article  ADS  Google Scholar 

  • Wong, H.K., Wu, C.S., Gaffey, J.D., Jr.: Electron-cyclotron maser instability caused by hot electrons. Phys. Fluids 28, 2751 (1985)

    Article  ADS  Google Scholar 

  • Yau, A., Andres, M.: Sources of ion outflow in the high latitude ionosphere. Space Sci. Rev. 80, 1 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parks, G.K. (2018). Electric Field and Current. In: Characterizing Space Plasmas. Astronomy and Astrophysics Library. Springer, Cham. https://doi.org/10.1007/978-3-319-90041-4_6

Download citation

Publish with us

Policies and ethics