Skip to main content

Collisionless Shocks

  • Chapter
  • First Online:
Characterizing Space Plasmas

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 815 Accesses

Abstract

When a flowing fluid encounters an obstacle in its path, a boundary forms. If the fluid flows faster than the local sound speed, a shock wave forms. Ordinary fluid shocks are produced by effects of compression and the supersonic flow becomes subsonic in the downstream region by converting the ordered flow energy into disordered thermal energy. The thickness of the shock transition region is of the order of a collision mean free path. Collisions play a fundamental role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anagnostopoulos, A., et al.: Magnetospheric origin of energetic (at least 50 keV) ions upstream of the bow shock - The October 31, 1977, Event. J. Geophys. Res. 59, 2859 (1986)

    Google Scholar 

  • Anderson, K.A., et al.: A component of nongyrotropic (phase-bunched) electrons upstream from the earth’s bow shock. J. Geophys. Res. 90, 10809 (1985)

    Article  ADS  Google Scholar 

  • Bale, S., Mozer, F.: Measurement of large parallel and perpendicular electric fields on electron spatial scales in the terrestrial bow shock. Phys. Rev. Lett. 98, 205001 (2007)

    Google Scholar 

  • Bale, S.D., et al.: Quasi-perpendicular shock structure and processes. Space Sci. Rev. 118, 161 (2005)

    Article  ADS  Google Scholar 

  • Balikhin, M., et al.: Ion sound wave packets at the quasi-perpendicular shock front. Geophys. Res. Lett. 32, L24106 (2005)

    Google Scholar 

  • Balogh, A., Treumann, R.: Physics of Collisionless Shocks: Space Plasma Shock Waves. Springer, New York (2013)

    Chapter  Google Scholar 

  • Behlke, R., et al.: Solitary structures associated with short large-amplitude magnetic structures (SLAMS) upstream of the earth’s quasi-parallel bow shock. Geophys. Res. Lett. 31, L16805 (2004)

    Google Scholar 

  • Burgess, D., Schwartz, S.: Colliding plasma structures current sheet and perpendicular shock. J. Geophys. Res. 93, 11327 (1988)

    Article  ADS  Google Scholar 

  • Burgess, D., et al.: Ion acceleration at the earth’s bow shock. Space Sci. Rev. 175, 5 (2012)

    Article  ADS  Google Scholar 

  • Burgess, D., Scholer, M.: Collisionless Shocks in Space Plasmas. Cambridge Press, London (2015)

    Google Scholar 

  • Chen, L.J., et al.: Multicomponent plasma distributions in the tail current sheet associated with substorms. Geophys. Res. Lett. 27, 843 (2000)

    Article  ADS  Google Scholar 

  • Collinson, G., et al.: A survey of hot flow anomalies at Venus. J. Geophys. Res. 119, 978 (2014)

    ADS  Google Scholar 

  • Cornilou-Wehrlin, N., et al.: The Cluster Spatio-Temporal Analysis of Field Fluctuations (STAFF) Experiment. Space Sci. Rev. 79, 107 (1997)

    Google Scholar 

  • Crooker, N., et al.: Transients associated with recurrent storms. J. Geophys. Res. 102, 14041 (1997)

    Article  Google Scholar 

  • Décréau, P.M., et al.: A resonance sounder and wave analyzer: performance and perspectives for the cluster mission. Space Sci. Rev. 79, 157 (1997)

    Google Scholar 

  • Dunlop, M., et al.: Four-point cluster application of magnetic field analysis tools: the curlometer. J. Geophys. Res. 107, 1384 (2002)

    Google Scholar 

  • Eastwood, J.P., et al.: The foreshock. Space Sci. Rev. 118, 41 (2005)

    Article  ADS  Google Scholar 

  • Feldman, W.C.: Quantitative tests of a steady state theory of solar wind electrons. J. Geophys. Res. 87, 7355 (1982)

    Article  ADS  Google Scholar 

  • Formisano, V., et al.: Measurement of the potential drop across the earth’s collisionless bow shock. Geophys. Res. Lett. 9, 1033 (1982)

    Article  ADS  Google Scholar 

  • Formisano, V., Palmiotto, F., Moreno, G.: α-particle observations in the solar wind. Sol. Phys. 15, 479 (1970)

    Article  ADS  Google Scholar 

  • Freeman, T., Parks, G.K.: Fermi acceleration of suprathermal solar wind oxygen ions. J. Geophys. Res. 105,15715 (2000)

    Article  Google Scholar 

  • Fuselier, S., Schmidt, W.: H+ and He2+ heating at the Earth’s bow shock. J. Geophys. Res. 99, 11539 (1994)

    Article  ADS  Google Scholar 

  • Fuselier, S., Thomsen, M.: He(2+) in field-aligned beams - ISEE results. Geophys. Res. Lett. 19, 437 (1992)

    Article  ADS  Google Scholar 

  • Fuselier, S.A., et al.: Ion distributions in the earth’s foreshock upstream from the bow shock. Adv. Space Res. 15, 43 (1995)

    Article  ADS  Google Scholar 

  • Ge, Y.S., et al., Case studies of mirror mode structures observed by THEMIS in the near-earth tail during substorms. J. Geophys. Res. 116, A01209 (2011)

    Article  Google Scholar 

  • Gold, T.: Gas Dynamics of Cosmic Clouds, vol. 103. North Holland, Amsterdam (1955)

    Google Scholar 

  • Goldstein, M., et al.: Multipoint observations of plasma phenomena made in space by cluster. J. Plasma Phys. 81, 325810301 (2015)

    Google Scholar 

  • Goodrich, C., Scudder, J.: The adiabatic energy change of plasma electrons and the frame dependence of the cross-shock potential at collisionless magnetosonic shock waves. J. Geophys. Res. 89, 6654 (1984)

    Article  ADS  Google Scholar 

  • Gosling, J.: Coronal mass ejection. AIP Conf. Proc. 516, 59 (2000)

    Google Scholar 

  • Gurgiolo, C., et al.: Non-E ×B ordered ion beams upstream of the earth’s bow shock. J. Geophys. Res. 86, 4415 (1981)

    Article  Google Scholar 

  • Gurnett, D.A.: In: Tsurutani, B., Stone, R.G. (eds.) Plasma Waves and Instabilities in Collisionless Shocks in the Heliosphere: Review of Current Research. Geophysical Monograph Series, vol. 35, pp. 207–224. American Geophysical Union, Washington, DC (1985)

    Chapter  Google Scholar 

  • Horbury, T., et al.: Four spacecraft measurements of the quasiperpendicular terrestrial bow shock: orientation and motion. J. Geophys. Res. 107 (2002). https://doi.org/10.1029/2001JA000273

    Article  Google Scholar 

  • Hoshino, M., Shimada, N.: Nonthermal electrons at high mach number shocks: electron shock surfing acceleration. Astrophys. J. 572, 880 (2002)

    Article  ADS  Google Scholar 

  • Hull, A., et al.: Large-amplitude electrostatic waves associated with magnetic ramp substructure at earth’s bow shock. Geophys. Res. Lett. 33, L15104 (2006)

    Google Scholar 

  • Ipavich, F., et al.: A statistical survey of ions observed upstream of earth’s bow shock: energy spectra, composition and spatial variations. J. Geophys. Res. 86, 4337 (1981)

    Article  Google Scholar 

  • Johnstone, A., et al.: Peace: a plasma electron and current experiment. Space Sci. Rev. 79, 351 (1997)

    Google Scholar 

  • Kennel, C.F., et al.: A quarter century of collisionless shock research. In: Stone, R.G., Tsurutani, B.T. (eds.) Collisionless Shocks in the Heliosphere: A Tutorial Review. Geophysical Monograph, vol. 34. American Geophysical Union, Washington, DC (1985)

    Google Scholar 

  • Krall, N.A.: What do we really know about collisionless shocks? Adv. Space Res. 20, 715 (1997)

    Article  ADS  Google Scholar 

  • Lee, E., et al.: Nonlinear development of shock like structure in the solar wind. Phys. Rev. Lett. 103, 031101 (2009)

    Google Scholar 

  • Lembège, B., et al.: Selected problems in collisionless-shock physics. Space Sci. Rev. 110, 161 (2004)

    Article  ADS  Google Scholar 

  • Leroy, M., et al.: The structure of perpendicular bow shock. J. Geophys. Res. 87, 5081 (1982)

    Article  Google Scholar 

  • Liu, Y., et al.: Thermodynamic structure of collision-dominated expanding plasma: heating of interplanetary coronal mass ejections. J. Geophys. Res. 111, A01102 (2006)

    Google Scholar 

  • Liu, Y., et al.: A comprehensive view of the 2006 December 13 CME: from the sun to interplanetary space. Astrophys. J. 689, 563 (2008)

    Article  ADS  Google Scholar 

  • Lucek, E., et al.: Cluster observations of hot flow anomalies. J. Geophys. Res. 109 (2004)

    Google Scholar 

  • Marcucci, M.F., et al.: Energetic magnetospheric oxygen in the magnetosheath and its response to IMF orientation: cluster observations. J. Geophys. Res. 109, A07203 (2004)

    Google Scholar 

  • Matsumoto, M., et al.: Plasma waves in the upstream and bow shock regions observed by geotail in 1997. Adv. Space Res. 20, 683 (1997)

    Article  ADS  Google Scholar 

  • Meziane, K., et al.: Evidence for acceleration of ions to ∼1 Mev by adiabatic-like reflection at the quasi-perpendicular earth’s bow shock. Geophys. Res. Lett. 26, 2925 (1999)

    Article  ADS  Google Scholar 

  • Möebius, E., et al.: Observations of the spatial and temporal structure of field-aligned and gyrating ring distributions at the quasi-perpendicular bow shock with cluster CIS. Ann. Geophys. 19, 1411 (2001)

    Article  ADS  Google Scholar 

  • Montgomery, M.: The solar wind in the outer solar system. Rev. Space Sci. 14, 559 (1973)

    Article  ADS  Google Scholar 

  • Ness., N., et al.: Initial results of the IMP 1 magnetic field experiment. J. Geophys. Res. 69, 3531 (1964)

    Article  ADS  Google Scholar 

  • Odstrcil, D., et al.: Numerical simulations of solar wind disturbances by coupled models. ASP Conf. Ser. 385, 167 (2008)

    Google Scholar 

  • Øieroset, M., Mitchell, D.L., Phan, T.D., et al.: Hot diamagnetic cavities upstream of the Martian bow shock. Geophys. Res. Lett. 28, 887 (2001)

    Article  ADS  Google Scholar 

  • Onsager, T., et al.: Survey of coherent ion reflection at the quasi-parallel bow shock. J. Geophys. Res. 95, 2261 (1990)

    Article  ADS  Google Scholar 

  • Papadopoulos, K.: Ion thermalization in the earth’s bow shock. J. Geophys. Res. 76, 3806 (1971)

    Article  ADS  Google Scholar 

  • Parks, G.K.: Physics of Space Plasmas, An Introduction. Westview Press, Boulder, CO (2004)

    Google Scholar 

  • Parks, G.K., et al.: Larmor radius size density holes discovered in the solar wind upstream of earth’s bow shock. Phys. Plasmas 13, 050701 (2006)

    Article  ADS  Google Scholar 

  • Parks, G., et al.: Density holes in the upstream solar wind. AIP Conf. Proc. 932, 9 (2007)

    Google Scholar 

  • Parks, G.K., et al.: Transport of transient solar wind particles in earth’s cusps. Phys. Plas. 15, 080702 (2008)

    Article  ADS  Google Scholar 

  • Parks, G.K., et al.: Entropy generation across earth’s collisionless bow shock. Phys. Rev. Lett. 108, 061102 (2012)

    Google Scholar 

  • Parks, G.K., et al.: Reinterpretation of slowdown of solar wind mean velocity in nonlinear structures observed upstream of earth’s bow shock. Astrophys. J. Lett. 77, L39 (2013)

    Article  ADS  Google Scholar 

  • Parks, GK.: Physics of Space Plasmas. An Introduction, Westview Press. Boulder, Colorado, (2004)

    Google Scholar 

  • Parks, G.K., et al.: Transport of solar wind H+ and He++ ions across earth’s bow shock. Astrophys. J. Lett. 825, 27 (2016)

    Google Scholar 

  • Parks, G., Lee, E.S., Fu, S.Y., et al.: Shocks in collisionless plasmas. Rev. Modern Plasma Phys. 1, 1 (2017)

    Google Scholar 

  • Paschmann, G., et al.: Energization of solar wind ions by reflection from earth’s bow shock. J. Geophys. Res. 85, 4689 (1980)

    Article  Google Scholar 

  • Paschmann, et al.: Characteristics if reflected and diffuse ions upstream from the earth’s bow shock. J. Geophys. Res. 86, 4355 (1981)

    Article  Google Scholar 

  • Richardson, J., et al.: Cool heliosheath plasma and deceleration of the upstream solar wind at the termination shock. Nature 454, 63 (2008)

    Article  ADS  Google Scholar 

  • Sarris, E., et al.: Simultaneous measurements of energetic ion (50 keV and above) and electron (220 keV and above) activity upstream of earth’s bow shock and inside the plasma sheet - magnetospheric source for the November 3 and December 3, 1977 upstream events. J. Geophys. Res. 92, 12083 (1987)

    Article  ADS  Google Scholar 

  • Schwartz, S., et al.: Active current sheets near the earth’s bow shock. J. Geophys. Res. 93, 11295 (1988)

    Article  ADS  Google Scholar 

  • Schwartz, S., et al.: Conditions for the formation of hot flow anomalies at earth’s bow shock. J. Geophys. Res. 105, 12639 (2000)

    Article  Google Scholar 

  • Sckopke, N.: Ion heating at the Earth’s quasi-perpendicular bow shock. Adv. Space Res. 15, 261 (1995)

    Article  ADS  Google Scholar 

  • Scudder, J., et al.: Electron observations in the solar wind and magnetosheath. J. Geophys. Res. 78, 6535 (1973)

    Article  ADS  Google Scholar 

  • Sibeck, D., et al.: Wind observations of foreshock cavities. J. Geophys. Res. 107, 1271 (2002)

    Google Scholar 

  • Skoug, R., et al.: Upstream and magnetosheath energetic ions with energies to 2 MeV. Geophys. Res. Lett. 23, 1223 (1996)

    Article  ADS  Google Scholar 

  • Slavin, J.A., et al.: Messenger and Venus express observations of solar wind interaction with Venus. Geophys. Res. Lett. 36, L09106 (2009)

    Google Scholar 

  • Sonnerup, B.U.Ö.: Acceleration of particles reflected at a shock front. J. Geophys. Res. 74, 1301 (1969)

    Article  ADS  Google Scholar 

  • Sonnet, C., et al.: The distant geomagnetic field, 3. Disorder and shocks in the magnetopause. J. Geophys. Res. 68, 1233 (1963)

    Article  ADS  Google Scholar 

  • Sundberg, T., et al.: Properties and origin of subproton-scale magnetic holes in the terrestrial plasma sheet. J. Geophys. Res. 120, 2600 (2015)

    Article  Google Scholar 

  • Terasawa, T.: Origin of 30–100 keV protons observed in the upstream region of the earth’s bow shock. Plan. Space Sci. 27, 365 (1979)

    Article  ADS  Google Scholar 

  • Teresawa, T.: Nonlinear dynamics of Alfvén waves: interactions between ions and shock upstream waves. Comput. Phys. Comm. 49, 193 (1988)

    Article  ADS  Google Scholar 

  • Thomsen, M.F.: Multi-spacecraft observations of collisionless shocks. Adv. Space Sci. 8, 157 (1988)

    Article  ADS  Google Scholar 

  • Thomsen, M., et al.: Hot, diamagnetic cavities upstream from the earth’s bow shock. J. Geophys. Res. 91, 2961 (1986)

    Article  ADS  Google Scholar 

  • Thomsen, M., et al.: Observational test of hot flow anomaly formation by the interaction of a magnetic discontinuity with the bow shock. J. Geophys. Res. 98, 15319 (1993)

    Article  ADS  Google Scholar 

  • Tidmann, D., Krall, N.: Shock Waves in Collisionless Plasmas. Wiley, New York (1971)

    Google Scholar 

  • Treuman, R.: Fundamentals of collisionless shocks for astrophysical application, 1. Non-relativistic shocks. Astron. Astrophys. Rev. 17, 409535 (2009)

    Google Scholar 

  • Turner, J., et al.: Magnetic holes in the solar wind. J. Geophys. Res. 82, 1921 (1977)

    Article  ADS  Google Scholar 

  • Uritsky, V., et al.: Active current sheets and candidate: hot flow anomalies upstream of Mercury’s bow shock. J. Geophys. Res. 119, 853 (2014)

    Article  Google Scholar 

  • Vaisberg, O., et al.: Origin of the backstreaming ions in a young hot flow anomaly. Plan. Spac. Sci. 131, 102 (2016)

    Article  ADS  Google Scholar 

  • Wang, L., et al.: Quiet time solar wind super halo electrons at solar minimum. AIP Conf. Proc. 1539, 299 (2013b)

    Article  ADS  Google Scholar 

  • Wilber, M., et al.: Foreshock density holes in the context of known upstream plasma structures. Ann. Geophys. 26, 3741 (2008)

    Article  ADS  Google Scholar 

  • Wilson III, L.B.: Low frequency waves at and upstream of collisionless shocks, In: Keiling, A., Lee, D.-H., Nakariakov, V. (eds.) Low-Frequency Waves in Space Plasmas. Geophysical Monograph, vol. 216, p. 269. American Geophysical Union, Washington, DC (2016)

    Google Scholar 

  • Wu, C.S.: Physical mechanisms for turbulent dissipation mechanisms in collisionless shock waves. Space Sci. Rev. 32, 83 (1982)

    ADS  Google Scholar 

  • Wygant, J., et al.: Electric field measurements at subcritical, oblique bow shock crossings. J. Geophys. Res. 92, 11109 (1987)

    Article  ADS  Google Scholar 

  • Xiao, T., et al.: Propagation characteristics of young hot flow anomalies near the bow shock: cluster observations. J. Geophys. Res. 120, 4142 (2015)

    Article  Google Scholar 

  • Zhang, H., et al.: Time history of events and macroscale interactions during substorm observations of a series of hot flow anomaly events. J. Geophys. Res. 115, A 12235 (2010a)

    Google Scholar 

  • Zhang, H., et al.: Spontaneous hot flow anomalies at quasi-parallel shocks: 1. Observations. J. Geophys. Res. 118, 3357 (2010b)

    Article  ADS  Google Scholar 

  • Zhao, D., et al.: Electron flat-top distributions and cross-scale wave modulations observed in the current sheet of geomagnetic tail. Phys. Plasma 24, 082903 (2017)

    Article  ADS  Google Scholar 

Additional Reading

  • Advances in Space Science: Proceedings of the D2.1 Symposium of COSPAR Scientific Commission D, Hamburg, 11–21 July 1994, vol. 15(8–9), pp. 1–544 (1995)

    Google Scholar 

  • Anderson, K.A.: Measurements of bow shock particles far upstream from the earth. J. Geophys. Res. 86, 4445 (1981)

    Article  ADS  Google Scholar 

  • Anderson, K.A., et al.: Thin sheets of energetic electrons upstream from the earth’s bow shock. Geophys. Res. Lett. 6, 401 (1979)

    Article  ADS  Google Scholar 

  • Auer, P.L., Kilb, R.W., Crevier, W.F.: Thermalization in the earth’s bow shock. J. Geophys. Res. 76, 2927 (1971)

    Article  ADS  Google Scholar 

  • Balikhin, M., et al.: Experimental determination of the dispersion of waves observed upstream of a quasi-perpendicular shock. Geophys. Res. Lett. 24, 787 (1997)

    Article  ADS  Google Scholar 

  • Balikhin, M.A., et al.: Determination of the dispersion of low frequency waves downstream of a quasi-perpendicular collisionless shock. Ann. Geophys. 15, 143 (1997)

    Article  ADS  Google Scholar 

  • Balogh, A.: Cluster at the earth’s bow shock: introduction. Space Sci. Rev. 118, 1 (2005)

    Article  Google Scholar 

  • Balogh, A., et al.: The cluster magnetic field investigation. Space Sci. Rev. 79, 65 (1997)

    Article  ADS  Google Scholar 

  • Barnes, A., Hung, R.: On the kinetic temperature of He++ in the solar wind. Cosmic Electrodyn. 3, 416 (1973)

    ADS  Google Scholar 

  • Bennett, L., Kivelson, M.G., Khurana, K., et al.: A model of the earth’s distant bow shock. J. Geophys. Res. 102, 26927 (1997)

    Article  ADS  Google Scholar 

  • Burgess, D.: Cyclic behavior at quasi-parallel collisionless shocks. Geophys. Res. Lett. 16, 345 (1989)

    Article  ADS  Google Scholar 

  • Burgess, D.: Foreshock-shock interaction at collisionless quasi-parallel shocks. Adv. Space Res. 15, 159 (1995)

    Article  ADS  Google Scholar 

  • Burlaga, L., Ogilvie, K.: Heating of the solar wind. Astro. J. 159, 659 (1970)

    Article  ADS  Google Scholar 

  • Chapman, J.F., Cairns, I,: Modeling of earth’s bow shock: applications. J. Geophys. Res. 109, A11201 (2004)

    Article  ADS  Google Scholar 

  • Chapman, S., et al.: Perpendicular shock reformation and acceleration. Space Sci. Rev. 121, 5 (2006)

    Article  ADS  Google Scholar 

  • Coates, A.J., et al.: AMPTE-UKS three-dimensional ion experiment. IEEE Trans. GeoSci. Remote Sens. GE 23, 287 (1985)

    Google Scholar 

  • Coroniti, F.: Dissipation discontinuities in hydromagnetic shock waves. J. Plasma Phys. 4, 265 (1970)

    Article  ADS  Google Scholar 

  • Dubouloz, N., Scholer, M.: On the origin of short large-amplitude magnetic structures upstream of quasi-parallel collisionless shocks. Geophys. Res. Lett. 20, 547 (1993)

    Article  ADS  Google Scholar 

  • Ellacot, S.W., Wilkinson, W.P.: Heating of directly transmitted ions at low mach number perpendicular shocks: new insights from a statistical physics formulation. J. Geophys. Res. 108, 1409 (2003)

    Article  Google Scholar 

  • Evans, D.: Precipitating electron fluxes formed by a magnetic field aligned. J. Geophys. Res. 79, 2853 (1974)

    Article  ADS  Google Scholar 

  • Eviatar, A., Schulz, M.: Ion-temperature anisotropies and the structure of the solar wind. Plan. Space Sci. 18, 321 (1970)

    Article  ADS  Google Scholar 

  • Facskó, G., et al.: Studies of hot flow anomalies using cluster multi-spacecraft measurements. Adv. Space Res. 45, 541 (2010)

    Article  ADS  Google Scholar 

  • Fazakerley, A., et al.: AMPTE-UKS observations of velocity distributions associated with magnetosheath waves. Adv. Space. Res. 15, 349 (1995)

    Article  ADS  Google Scholar 

  • Fazakerley, A.N., et al.: Observations of upstream ions, solar wind ions and electromagnetic waves in the earth’s foreshock. Adv. Space Res. 15, 103 (1995)

    Article  ADS  Google Scholar 

  • Feldman, W., et al.: Plasma and magnetic fields from the sun. In: White, O.R. (ed.) The Solar Output and its Variations, vol. 351. Colorado Associated University Press, Boulder (1977)

    Google Scholar 

  • Feldman, W.C.: Electron velocity distributions near collisionless shocks. In: Tsurutani, B., Stone, R.G. (eds.) Collisionless Shocks in Heliosphere: Review of Current Research. Geophysical Monograph. American Geophysical Union, Washington, DC (1985)

    Google Scholar 

  • Filbert, P., Kellogg, P.J.: Electrostatic noise at the plasma frequency beyond the earth’s bow shock. J. Geophys. Res. 84, 1369 (1979)

    Article  ADS  Google Scholar 

  • Fisk, L., Gloeckler, G.: The global configuration of the heliosheath inferred from recent voyager 1 observations, Astrophys. J. 776, 79 (2013)

    Article  ADS  Google Scholar 

  • Fitzenreiter, R.J., et al.: Detection of bump-on-tail reduced electron velocity distributions at the electron foreshock boundary. Geophys. Res. Lett. 11, 496 (1984)

    Article  ADS  Google Scholar 

  • Fitzenreiter, R.J., et al.: The electron foreshock. Adv. Space Res. 15, 27 (1995)

    Article  Google Scholar 

  • Forsland, D., Shock, C.R.: Numerical simulation of electrostatic counterstreaming instabilities of ion beams. Phys. Rev. Lett. 25, 281 (1970)

    Article  ADS  Google Scholar 

  • Gedalin, M.: Ion dynamics and distribution at the quasi-perpendicular collisionless shock front. Surv. Geophys. 18, 541 (1997)

    Article  ADS  Google Scholar 

  • Gosling, J., Robson, A.: Ion reflection, gyration and dissipation at supercritical shocks. In: Stone, R.G., Tsurutani, B.T. (eds.) Collisionless Shocks in the Heliosphere: Reviews of Current Research. Geophysical Monograph, vol. 35. American Geophysical Union, Washington, DC (1985)

    Google Scholar 

  • Gosling, J.T., Hildner, E., Mac Queen, R.M., Munro, R.H., et al.: Direct observations of a flare related coronal and solar wind disturbance. Solar Phys. 40, 439 (1975)

    Article  ADS  Google Scholar 

  • Gosling, J., et al.: Ion reflection and downstream thermalization at the quasi-parallel bow shock. J. Geophys. Res. 94, 10027 (1989)

    Article  ADS  Google Scholar 

  • Gosling, J.T., et al.: Counterstreaming suprathermal electron events upstream of corotating shocks in the solar wind beyond approximately 2 AU: ULYSSES. Geophys. Res. Let. 20, 2335 (1993)

    Article  ADS  Google Scholar 

  • Greenstadt, E., et al.: Dual satellite observations of earth’s bow shock, III: field determined shock structure. Cosmic Elect. 1, 316 (1970)

    ADS  Google Scholar 

  • Greenstadt, E., Fredricks, R.: Shock systems in collisionless plasmas. In: Lanzerotti, L., Kennel, C., Parker, E.N. (eds.) Solar System Plasma Physics, vol. III. North Holland, Amsterdam (1979)

    Google Scholar 

  • Gringaus, K., et al.: Some results of experiments in interplanetary space by means of charged particle traps on soviet space probes. Space Res. 2, 539 (1961)

    Google Scholar 

  • Hellinger, P., et al.: Whistler waves in 3D hybrid simulations of quasi-perpendicular shocks. Geophys. Res. Lett. 22, 2091 (1995)

    Article  Google Scholar 

  • Hellinger, P., Mangeney, A.: Electromagnetic ion beam instabilities: oblique pulsations. J. Geophs. Res. 104, 4669 (1999)

    Article  ADS  Google Scholar 

  • Hirshberg. J, et al.: The helium component of the solar wind streams. J. Geophys. Res. 79, 934 (1974)

    Article  ADS  Google Scholar 

  • Hong, J., et al.: Effect of ion-to-electron mass ratio on the evolution of ion beam driven instability in particle-in-cell simulations. Phys. Plasmas 19, 092111 (2012)

    Article  ADS  Google Scholar 

  • Hoppe, M., et al.: Upstream hydromagnetic waves and their association with backstreaming ion populations - ISEE 1 and 2 observations. J. Geophys. Res. 86, 4471 (1981)

    Article  ADS  Google Scholar 

  • Hull, A., et al.: Electron heating and phase space signatures at strong and weak quasi-perpendicular shocks. J. Geophys. Res. 103, 2041 (1998)

    Article  ADS  Google Scholar 

  • Hundhausen, A., et al.: Vela satellite observations of solar wind ions. J. Geophys. Res. 72, 1979 (1967)

    Article  ADS  Google Scholar 

  • Kaufmann, R., et al.: Shock observations with the Explorer 12 magnetometer. J. Geophys. Res. 72, 2323 (1967)

    Article  ADS  Google Scholar 

  • Kucharek, H., Scholer, M.: Quasi-perpendicular to quasi-parallel shock transitions. Adv. Space Sci. 15(8/9), 171 (1995)

    Article  ADS  Google Scholar 

  • Kucharek, H., et al.: On the origin of field-aligned beams at the quasi-perpendicular bow shock: multi-spacecraft observations by cluster. Ann. Geophys. 22, 2301 (2004)

    Article  ADS  Google Scholar 

  • Lembège, B., Savioni, P.: Formation of reflected electron bursts by the nonstationarity and nonuniformity of a collisionless shock front. J. Geophys. Res. 107, 1037 (2002)

    Article  Google Scholar 

  • Lembège, B., et al.: Nonstationarity of a two-dimensional perpendicular shock: competing mechanisms. J. Geophys. Res. 114 (2009) https://doi.org/10.1029/2008JA013618

    Article  Google Scholar 

  • Leroy, M., et al.: Simulation of perpendicular bow shock. Geophys. Res. Lett. 8, 1269 (1981)

    Article  ADS  Google Scholar 

  • Lin, N., et al.: Nonlinear low frequency wave aspect of foreshock density holes. Ann. Geophys. 26(12), 3707 (2008)

    Article  ADS  Google Scholar 

  • Lin, R.P., et al.: A three dimensional plasma and energetic particle investigation for the WIND spacecraft. Space Sci. Rev. 71, 125 (1995)

    Article  ADS  Google Scholar 

  • Lin, Y.: Global hybrid simulation of hot flow anomalies near the bow shock and in the magnetosheath. Planet. Space Sci. 50, 577 (2002)

    Article  ADS  Google Scholar 

  • Longmire, C.: Elementary Plasma Physics. Interscience Publishers. A Division of Wiley, New York (1963)

    MATH  Google Scholar 

  • Marsch, E., Zhao, L., Tu, C.Y.: Limits on the core temperature anisotropy of solar wind protons. Ann. Geophys. 24, 2057 (2006)

    Article  ADS  Google Scholar 

  • Masters, A., McAndrews, H., Steinberg, J., et al.: Hot flow anomalies at Saturn’s bow shock. J. Geophys. Res. 114, A08217 (2009)

    Article  ADS  Google Scholar 

  • Matsukio, S., Scholer, M.: On microinstabilities in the foot of high mach number perpendicular shocks. J. Geophys. Res. 111, A06104 (2006)

    ADS  Google Scholar 

  • Mazelle, C., et al.: Production of gyrating ions from nonlinear wave-particle interaction upstream from the earth’s bow shock: a case study from cluster-CIS. Planet. Space Sci. 51, 785 (2003)

    Article  ADS  Google Scholar 

  • Meziane, K., et al.: Three-dimensional observations of gyrating ion distributions far upstream from the earth’s bow shock and their association with low-frequency waves. J. Geophys. Res. 106 5731 (2001)

    Article  ADS  Google Scholar 

  • Meziane, K., et al.: Simultaneous observations of field-aligned beams and gyrating ions in the terrestrial foreshock. J. Geophys. Res. 119, A05107 (2004)

    ADS  Google Scholar 

  • Ogilvie, K.: Differences Between the Bulk Speeds of Hydrogen and Helium in the Solar Wind, J. Geophys. Res. 80, 1335 (1975)

    Article  ADS  Google Scholar 

  • Ogilvie K.W., Zwally, H.J.: Hydrogen and helium velocities in the solar wind. Solar Phys. 2(4), 236 (1972)

    ADS  Google Scholar 

  • Omidi, N., Sibeck, D.: Formation of hot flow anomalies and solitary shocks. J. Geophys. Res. 112, A01203 (2007)

    Article  ADS  Google Scholar 

  • Omidi, N., et al.: Spontaneous hot flow anomalies at quasi-parallel shocks: 2. Hybrid simulations. J. Geophys. Res. 118, 173 (2013)

    ADS  Google Scholar 

  • Onsager, T., et al.: High frequency electrostatic waves near earth’s bow shock. J. Geophys. Res. 13, 397 (1989)

    Google Scholar 

  • Park, J., et al.: Particle-in-cell simulations of particle energization from low Mach number fast mode shocks. Phys. Plasmas 19, 062904 (2012)

    Article  ADS  Google Scholar 

  • Pappadopoulos, K.: Ion thermalization in the earth’s bow shock. J. Geophys. Res. 76, 3806 (1971)

    Article  ADS  Google Scholar 

  • Paschmann, G., et al.: Observations of gyrating ions in the foot of the nearly perpendicular bow shock. Geophys. Res. Lett. 9, 881 (1982)

    Article  ADS  Google Scholar 

  • Quest, K.: Simulations of high-Mach-number collisionless perpendicular shocks in astrophysical plasmas. Phys. Rev. Lett. 54, 1872 (1985)

    Article  ADS  Google Scholar 

  • Report of the workshop on opportunities in plasma astrophysics: Princeton, NJ, January 18–21 (2010)

    Google Scholar 

  • Robbins, D., et al.: Helium in the solar wind. J. Geophys. Res. 75, 1178 (1970)

    Article  ADS  Google Scholar 

  • Scholer, M., Matsukiyo, S.: Nonstationarity of quasi-perpendicular shocks: a comparison of full particle simulations with different ion to electron mass ratio. Ann. Geophys. 22, 2345 (2004)

    Article  ADS  Google Scholar 

  • Sckopke, N., et al.: Evolution of ion distributions across the nearly perpendicular bow shock: specularly and non-specularly reflected-gyrating ions. J. Geophys. Res. 88, 6121 (1983)

    Article  ADS  Google Scholar 

  • Sckopke, N., et al.: Ion thermalization in quasi-perpendicular shocks involving reflected ions. J. Geophys. Res. 95, 6337 (1990)

    Article  ADS  Google Scholar 

  • Scholer, M., et al.: Quasi-perpendicular shocks: length scale of the cross potential, shock reformation and implications for shock surfing. J. Geophys. Res. 108, 1014 (2003)

    Article  Google Scholar 

  • Scholer, M., et al.: Cluster at the bow shock: status and outlook. Space Sci. Rev. 118, 223 (2005)

    Article  ADS  Google Scholar 

  • Schwartz, S.J., Burgess, D.: Quasi-parallel shocks: a patchwork of three-dimensional structures. Geophys. Res. Lett. 18, 373 (1991)

    Article  ADS  Google Scholar 

  • Scudder, J.D., et al.: The resolved layer of a collisionless, high beta, supercritical quasi-perpendicular shock wave, I, II, III. J. Geophys. Res. 91, 11019 (1986)

    Article  ADS  Google Scholar 

  • Sibeck, D., et al.: The magnetosphere as a sufficient source for upstream ions on November 1, 1984. J. Geophys. Res. 93, 14328 (1988)

    Article  ADS  Google Scholar 

  • Shestakov, A., Vaisberg, O.L.: Study and comparison of the parameters of five hot flow anomalies at a bow shock front. Cosmic Res. 54, 77 (2016)

    Article  ADS  Google Scholar 

  • Strong, I.B., et al.: Measurements of proton temperatures in the solar wind. Phys. Rev. Lett. 16, 632 (1966)

    Article  ADS  Google Scholar 

  • Teste, A., Parks, G.K.: Counter streaming beams and flat-top electron distributions observed with Langmuir, whistler, and compressional Alfvén waves in earth’s magnetic tail. Phys. Rev. Lett. 102(7), id. 075003 (2009)

    Google Scholar 

  • Thomsen, M.F.: Upstream suprathermal ions. In: Tsurutani, B.T., Stone, R.G. (eds.) Collisionless Shocks in Heliosphere: Reviews of Current Research. Geophysical Monograph, vol. 35, p. 253. American Geophysical Union, Washington, DC (1985)

    Google Scholar 

  • Thomsen, M., et al.: Observational evidence on the origin of ions upstream of the earth’s bow shock. J. Geophys. Res. 88, 7843 (1983)

    Article  ADS  Google Scholar 

  • Thomsen, M., et al.: Magnetic pulsations at the quasi-parallel shock. J. Geophys. Res. 95, 957 (1990)

    Article  ADS  Google Scholar 

  • Thomas, V.A., Brecht, S.H.: Evolution of diamagnetic cavities in the solar wind. J. Geophys. Res. 93, 11341 (1988)

    Article  ADS  Google Scholar 

  • Thomas, V.A., et al.: Hybrid simulation of the formation of a hot flow anomaly. J. Geophys. Res. 96, 11625 (1991)

    Article  ADS  Google Scholar 

  • Tsurutani, B., Stone, R.G. (eds.): Collisionless Shocks in the Heliosphere: Review of Current Research. Monographical Series, vol. 35. American Geophysical Union, Washington, DC (1985)

    Google Scholar 

  • Umeda, T., et al.: Modified two-stream instability at perpendicular collisionless shocks: full particle simulations. J. Geophys. Res. 117, A03206 (2012)

    Article  ADS  Google Scholar 

  • Wang, S., Zong, Q.-G., Zhang, H.: Hot flow anomaly formation and evolution: cluster observations. J. Geophys. Res. 118, 957 (2013)

    Article  Google Scholar 

  • Wilkinson, W.P., et al.: Nonthermal ions and associated magnetic-field behavior at a quasi-parallel earth’s bow shock. J. Geophys, Res. 98, 3889 (1993)

    Article  Google Scholar 

  • Wilkinson, W.P.: The earth’s quasi-parallel bow shock: review of observations and perspectives for cluster. Planet. Space Sci. 51, 629 (2003)

    Article  ADS  Google Scholar 

  • Wilkinson, W., Schwartz, S.: Parametric dependence of the density of specularly reflected ions at quasi-perpendicular collisionless shocks. Planet. Space Sci. 38, 419 (1990)

    Article  ADS  Google Scholar 

  • Wilson III, L.B., et al., Low-frequency whistler waves and shocklets observed at quasi-perpendicular interplanetary shocks. J. Geophys. Res. 114, A10106 (2009)

    Article  ADS  Google Scholar 

  • Wilson III, L.B., et al.: Quantified energy dissipation rates: electromagnetic wave observations in the terrestrial bow shock: 2. Waves and Dissipation. J. Geophys. Res. 119, 6475 (2014)

    Article  ADS  Google Scholar 

  • Wilson III, L.B., et al.: Shocklets, SLAMS, and field-aligned ion beams in the terrestrial foreshock. J. Geophys. Res. 118, 957 (2013)

    Article  Google Scholar 

  • Wu, C.S., A fast Fermi process-energetic electrons accelerated by a nearly perpendicular bow shock. J. Geophys. Res. 89, 8857 (1984)

    Article  ADS  Google Scholar 

  • Wu, C.S., Yoon, P.: Kinetic Hydromagnetic instabilities due to a spherical shell distribution of pickup ions. J. Geophys. Res. 95, 10273 (1990)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parks, G.K. (2018). Collisionless Shocks. In: Characterizing Space Plasmas. Astronomy and Astrophysics Library. Springer, Cham. https://doi.org/10.1007/978-3-319-90041-4_4

Download citation

Publish with us

Policies and ethics