Skip to main content

Escaping Stellar Particles

  • Chapter
  • First Online:
Characterizing Space Plasmas

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 849 Accesses

Abstract

Particles from hot stars are continuously escaping. It was known from early on that were it not for such particles, the interplanetary and interstellar space would be a near perfect vacuum with an occasional cosmic ray zipping through. The escaping particles from Sun have been called solar wind (SW). The SW travels across the interplanetary magnetic field (IMF) inducing \(\mathcal {EMF}\) that drives a heliospheric current sheet which then interacts with magnetized planets creating structures like magnetospheres populated by high energy particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Biermann, L.: Observed Dynamical processes in interplanetary space. In: Clauser, F.H. (ed.) Plasma Dynamics. Addison-Wesley, Reading, MA (1960)

    Google Scholar 

  • Bonetti, A., et al.: Explorer X plasma measurements. J. Geophys. Res. 68, 4017 (1963)

    Article  ADS  Google Scholar 

  • Chamberlain, J.: Interplanetary gas, 2, expansion of a model solar corona. Astrophys. J. 131, 47 (1960)

    Article  ADS  Google Scholar 

  • Chew, G.F., Goldberger, M.L., Low, F.E.: The Boltzmann equation and the one-fluid hydromagnetic equations in the absence of particle collisions. Proc. R. Soc. A236, 112 (1956)

    Article  MathSciNet  ADS  Google Scholar 

  • Choi, C.-R., et al.: A study of solitary wave trains generated by injection of a blob into plasmas. Phys. Plasmas 19, 102903 (2012)

    Article  ADS  Google Scholar 

  • Cranmer, S.R.: Coronal holes and the high speed solar wind. Space Sci. Rev. 101, 229 (2002)

    Google Scholar 

  • Cranmer, S.R.: Self consistent models of the solar wind. Space Sci. Rev. 172, 145 (2012)

    Article  ADS  Google Scholar 

  • Dessler, A.: Solar wind and interplanetary magnetic field. Rev. Geophys. 5, 1 (1967)

    Article  ADS  Google Scholar 

  • Echim, M., et al.: A review of solar wind modeling: kinetic and fluid aspects. Surv. Geophys. 32, 1 (2011)

    Article  ADS  Google Scholar 

  • Escoubet, P., et al.: The Cluster and Phoenix Missions. Kluwer Academic, Dordrecht (1997)

    Chapter  Google Scholar 

  • Evans, D.: Precipitating electron fluxes formed by a magnetic field aligned potential difference. J. Geophys. Res. 79, 2853 (1974)

    Article  ADS  Google Scholar 

  • Feldman, W., et al.: The solar wind He2+ to H+ temperature ratio. J. Geophys. Res. 79, 2319 (1974)

    Article  ADS  Google Scholar 

  • Feldman, W., et al.: Solar wind electrons. J. Geophys. Res. 80, 4181 (1975)

    Article  ADS  Google Scholar 

  • Feldman, W., et al.: Characteristic electron variations across simple high-speed solar wind streams. J. Geophys. Res. 83, 5285 (1978)

    Article  ADS  Google Scholar 

  • Fitzenreiter, R., et al.: Observations of electron velocity distribution functions in the solar wind by the WIND spacecraft: high angular resolution Strahl measurements. Geophys. Res. Lett. 25, 249 (1998)

    Article  ADS  Google Scholar 

  • Gringaus, K., et al.: Some results of experiments in interplanetary space by means of charged particle traps on soviet space probes. Space Res. 2, 539 (1961)

    Google Scholar 

  • Hammond, C., et al.: Variation of electron strahl width in the high-speed solar wind: Ulysses observations. Astron. Astrophys. 316, 350 (1996)

    Google Scholar 

  • He, J., et al.: Evidence of landau and cyclotron resonance between protons and kinetic waves in solar wind turbulence. Astrophys. J. Lett. 800, L31 (2015)

    Article  ADS  Google Scholar 

  • Hundhousen, A.: Direct observations of solar wind particles. Space Sci. Rev. 8, 690 (1968)

    Google Scholar 

  • Hunten, D.: Thermal and nonthermal escape mechanisms for terrestrial bodies. Planet. Space Sci. 30, 773 (1982)

    Article  ADS  Google Scholar 

  • Jeans, J.H.: The Dynamical Theory of Gases. Cambridge University Press, Cambridge (1925)

    Google Scholar 

  • Kasper, J.C., et al.: Solar wind temperature anisotropies. In: Velli, M., Bruno, R., Malara, F. (eds.) Proceedings of the Tenth International Solar Wind Conference, vol. 538. American Institute of Physics, Melville (2003)

    Google Scholar 

  • Lemaire, J., Scherer, M.: Kinetic models of the solar wind. J. Geophys. Res. 76, 7479 (1971)

    Article  ADS  Google Scholar 

  • Lemaire, J., Scherer, M.: Kinetic models of the solar wind and polar wind. Rev. Geophys. Space Phys. 11, 427 (1973)

    Article  ADS  Google Scholar 

  • Lin, R.P.: Energetic particles in the solar wind and at the Sun. AIP Conf. Proc. 385, 25 (1997)

    Google Scholar 

  • Liu, Y., et al.: Thermodynamic structure of collision-dominated expanding plasma: heating of interplanetary coronal mass ejections. J. Geophys. Res. 111, A01102 (2006)

    Google Scholar 

  • Luhman, J., et al.: Solar origins of solar wind properties during the cycle 23 solar minimum and rising phase of cycle 24. J. Adv. Res. 4, 221 (2013)

    Google Scholar 

  • Maksimovic, M., et al.: On the exospheric approach for the solar wind acceleration. Astrophys. Space Sci. 277, 181 (2001)

    Google Scholar 

  • Mangeney, A., et al.: WIND observations of coherent electrostatic waves in the solar wind. Ann. Geophys. 17, 439 (1999)

    Article  ADS  Google Scholar 

  • Marsch, E., et al.: Solar wind proton: three dimensional velocity distributions and derived plasma parameters measured between 0.3 AU and 1 AU. J. Geophys. Res. 87, 52 (1982a)

    Article  ADS  Google Scholar 

  • Marsch, E., et al.: Solar wind helium ions: observations of the Helios solar probes between 0.3 and 1 AU. J. Geophys. Res. 87, 31 (1982b)

    Article  ADS  Google Scholar 

  • Marsch, E., et al.: Acceleration potential and angular momentum of undamped MHD-waves in stellar winds. Astro. Astrophys. 164, 77 (1986)

    Google Scholar 

  • Marsch, E.: Kinetic physics of the solar corona and solar wind. Living Rev. Sol. Phys. 3, 1 (2006)

    Google Scholar 

  • Marsch, E.: Diffusion in velocity space of solar wind protons exposed to parallel and oblique plasma waves. AIP Conf. Proc. 1539, 243 (2016)

    Google Scholar 

  • Meyer-Vernet, N.: How does the solar wind blow? A simple kinetic model. Eur. J. Phys. 20, 167 (1999)

    Article  ADS  Google Scholar 

  • Meyer-Vernet, N.: Basics of the Solar Wind. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  • Neugebauer, M., Snyder, C.: Mariner 2 observations of the solar wind, 1. Average properties. J. Geophys. Res. 71, 4469 (1966)

    Article  ADS  Google Scholar 

  • Pannekoek, A.: Ionization in stellar atmospheres. Bull. Astron. Inst. Neth. 1, 107 (1922)

    Google Scholar 

  • Parker, E.N.: Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664 (1958)

    Article  ADS  Google Scholar 

  • Parks, G.K., Lee, E.S., Fu, S.Y., et al.: Transport of solar wind H+ and He++ ions across Earth’s bow shock. Astrophys. J. Lett. 825, L27 (2016)

    Google Scholar 

  • Pilipp, W., et al.: Characteristics of electron velocity distribution functions in the solar wind derived from the Helios plasma experiment. J. Geophys. Res., 92, 1075 (1978)

    Article  ADS  Google Scholar 

  • Rosseland, S.: Note on the absorption of radiation within a star. Mon. Not. R. Astron. Soc. 84, 525 (1924)

    Article  ADS  Google Scholar 

  • Sckopke, N.: Ion heating at the Earth’s quasi-perpendicular bow shock. Adv. Space Res. 15, 261 (1995)

    Article  ADS  Google Scholar 

  • Spitzer, L., Härm, R.: Transport phenomena in a completely ionized gas. Phys. Rev. 89, 977 (1953)

    Article  ADS  Google Scholar 

  • Tam, S., Chang, T.: Kinetic evolution and acceleration of the solar wind. Geophys. Res. Lett. 26, 3189 (1999)

    Article  ADS  Google Scholar 

  • Temerin, M., et al.: Observations of double layers and solitary waves in the auroral plasma. Phys. Rev. Lett. 48, 1175 (1982)

    Article  ADS  Google Scholar 

  • Tu, C.-Y., Marsch, E.: Two-fluid model for heating of the solar corona and acceleration of the solar wind by high-frequency Alfvén waves. Sol. Phys. 171, 363 (1997)

    Google Scholar 

  • Tu, C.-Y., Wang, L.H., Marsch, E.: Formation of the proton beam distribution in high-speed solar wind. J. Geophys. Res. 107, 1291 (2002)

    Google Scholar 

  • Wang, L., et al.: Quiet time solar wind super halo electrons at solar minimum. AIP Conf. Proc. 1539, 299 (2013)

    Google Scholar 

  • Wang, L.H., et al.: The injection of ten electron/3He-rich SEP events. Astron. Astrophys. 585, A119 (2016)

    Article  ADS  Google Scholar 

  • Yoon, P., et al.: Asymmetric solar wind electron distributions. Astrophys. J. 755, 112 (2012a)

    Article  ADS  Google Scholar 

  • Yoon, P., et al.: Langmuir turbulence and suprathermal electrons. Space Sci. Rev. 173, 459 (2012b)

    Article  ADS  Google Scholar 

  • Yoon, P.: Kinetic instabilities in the solar wind driven by temperature anisotropies. Rev. Mod. Plasma Phys. 1, 4 (2017)

    Google Scholar 

  • Zouganelis, I., et al.: A new exospheric model of the solar wind acceleration: the transonic solutions. In: Solar Wind, 10, 315 (2003)

    Google Scholar 

Additional Reading

  • Asbridge J.R., et al.: Helium and hydrogen velocity differences in the solar wind. J. Geophys. Res. 81, 2719 (1976)

    Article  ADS  Google Scholar 

  • Barnes, A., et al.: Solar wind heating. Cosmic Electrodyn. 3, 254 (1972)

    Google Scholar 

  • Formisano, V., Palmiotto, F., Moreno, G.: α-particle observations in the solar wind. Solar Phys. 15, 479 (1970)

    Article  ADS  Google Scholar 

  • Gaelzer, R., et al.: Asymmetric solar wind electron super thermal distributions. Astrophys. J. 677, 676 (2008)

    Article  ADS  Google Scholar 

  • Geiss, J., Eberhardt, P., et al., Apollo I l and 12 solar wind composition experiments: fluxes of He and Ne isotopes. J. Geophys. Res. 75, 5972 (1970)

    Article  ADS  Google Scholar 

  • He, J., et al.: Proton heating in solar wind compressible turbulence with collisions between counter-propagating waves. Astrophys. J. Lett. 813, L30 (2015)

    Article  ADS  Google Scholar 

  • He, J. et al.: Sunward propagating Alfvén waves in association with sunward drifting proton beams in the solar wind. Astrophys. J. 805, 176 (2015)

    Article  ADS  Google Scholar 

  • Hollweg, J.: Some physical processes in the solar wind. Rev. Geophys. Space Phys. 16, 689 (1974)

    Article  ADS  Google Scholar 

  • Kim, S., et al.: Asymptotic theory of solar wind electrons Astrophys. J. 806, article id. 32 (2015)

    Article  ADS  Google Scholar 

  • Maksimovic, M., et al.: Radial evolution of the electron distribution functions in the fast solar wind between 0.3 and 1.5 AU. J. Geophys. Res. 110, A9104 (2005)

    Google Scholar 

  • Meyer-Vernet, N., Issautier, K.: Electron temperature in the solar wind: generic radial variation from kinetic collisionless models. J. Geophys. Res. 103, 29705 (1998)

    Article  Google Scholar 

  • Montgomery, M.: Solar-wind electrons Vela 4 measurements. J. Geophys Res. 73, 4999 (1968)

    Article  ADS  Google Scholar 

  • Ogilvie K., et al.: Electron energy flux in the solar wind. J. Geophys. Res. 76, 8165 (1971)

    Article  ADS  Google Scholar 

  • Parks, G.K.: Physics of Space Plasmas: An Introduction, 2nd edn. Perseus Book Company, New York (2004)

    Google Scholar 

  • Pezzi, O. Solar Wind Collisional Heating, J. Plasma Phys., 83, 555830301 (2017)

    Google Scholar 

  • Pierrard, V., Lemaire, J.: Electron velocity distribution functions from the solar wind to the corona. J. Geophys. Res. 104, 17021 (1999)

    Article  Google Scholar 

  • Pierrard, V., Lamy, H., Lemaire, J.: Exospheric distributions of minor ions in the solar wind. J. Geophys. Res. 109, A02118 (2004)

    Google Scholar 

  • Rème, H., et al.: First multi-spacecraft ion measurements in and near the Earth’s magnetosphere with the identical cluster ion spectrometry (CIS) experiment. Ann. Geophys. 19, 1303 (2001)

    Google Scholar 

  • Richardson, J., et al.: Pressure pulses at Voyager 2: drivers of interstellar transients? Astrophys. J. 834, 190 (2017)

    Article  ADS  Google Scholar 

  • Robbins, D., et al.: Helium in the solar wind. J. Geophys. Res. 75, 1178 (1970)

    Article  ADS  Google Scholar 

  • Savoini, P., et al.: Under and over-adiabatic electrons through a perpendicular collisionless shock: theory versus simulations. Ann. Geophys. 23, 3685 (2005)

    Article  ADS  Google Scholar 

  • Shi, Q.Q., et al.: Solar wind entry into the high-latitude terrestrial magnetosphere during geomagnetically quiet times. Nature (2013). https://doi.org/10.1038/ncomms2476

  • Tao, J., et al.: Quiet-time suprathermal ( 0.1–1.5 keV) electrons in the solar wind. Astrophys. J. 820, 22 (2016)

    Article  ADS  Google Scholar 

  • Tu, C.-Y., The damping of interplanetary Alfvénic fluctuations and the heating of the solar wind. J. Geophys. Res. 93, 7 (1988)

    Article  ADS  Google Scholar 

  • Tu, C.-Y., Marsch, E.: MHD structures, waves and turbulence in the solar wind: observations and theories. Space Sci. Rev. 73, 1 (1995)

    Article  ADS  Google Scholar 

  • Tu, C.-Y., Marsch, E.: Wave dissipation by ion cyclotron resonance in the solar corona. Astron. Astrophys. 368, 1071 (2001)

    Article  ADS  Google Scholar 

  • Tu, C.-Y., Marsch, E., Wang, L.H.: Cyclotron-resonant diffusion regulating the core and beam of solar wind proton distributions. In: Proceedings of the Tenth International Solar Wind Conference, AIP Conference Proceedings, vol. 679, p. 389 (2003)

    ADS  Google Scholar 

  • Vocks, C.: A kinetic model for ions in the solar corona including wave-particle interactions and Coulomb collisions. Astrophys. J. 568, 1017 (2002)

    Article  ADS  Google Scholar 

  • Volkov, A.N.: On the hydrodynamics model of thermal escape from planetary atmospheres and its comparison with kinetic simulation. Mon. Not. R. Astron. Soc. 459, 2030 (2016)

    Article  ADS  Google Scholar 

  • Wang, L., et al.: Pitch-angle distributions and temporal variations of 0.3–300 keV solar impulsive electron events. Astrophys. J. 727, 121 (2011)

    Article  ADS  Google Scholar 

  • Wang, L., et al.: Simulation of energetic neutral atoms from solar energetic particles. Astrophys. J. Lett. 793, L37 (2014)

    Article  ADS  Google Scholar 

  • Wang, L.H., et al.: Solar wind 20–200 keV superhalo electrons at quiet times. Astrophys. J. Lett. 803, L2 (2015)

    Article  ADS  Google Scholar 

  • Yang, L.: Proton heating in solar wind compressible turbulence with collisions between counter-propagating waves. Astrophys. J. Lett., 811, L8, 2015.

    Article  ADS  Google Scholar 

  • Zong, Q., et al.: Fast acceleration of inner magnetospheric hydrogen and oxygen ions by shock induced ULF waves. J. Geophys. Res.,117, A11206 (2012)

    Article  Google Scholar 

  • Zouganelis, I., et al.: Acceleration of weakly collisional solar-type winds. Astrophys. J. Lett. 626, L117 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parks, G.K. (2018). Escaping Stellar Particles. In: Characterizing Space Plasmas. Astronomy and Astrophysics Library. Springer, Cham. https://doi.org/10.1007/978-3-319-90041-4_3

Download citation

Publish with us

Policies and ethics