Skip to main content

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 48))

Abstract

In this paper we present a matrix-free geometric multigrid method for solving a linear system of equations needed at every iteration of the topology optimization process. The multigrid solver is parallelized on an Nvidia graphics card using CUDA, therefore reducing simulation time drastically. This enables users to derive optimal topologies represented with a high number of elements while having low execution time. Computational domain is discretized with a regular structured hexahedral mesh. To improve the accuracy of the non-conformal discretizazion, the Dirichlet boundary conditions are imposed in a weak form using Nitsche method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bendsoe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods and Applications. Springer Science & Business Media (2003)

    Google Scholar 

  2. Borrvall, T., Petersson, J.: Large-scale topology optimization in 3D using parallel computing. Comput. Methods Appl. Mech. Eng. 190(46), 6201–6229 (2001)

    Article  Google Scholar 

  3. von Danwitz, M.: Automated application of Dirichlet boundary conditions in voxel based analyses using the Finite Cell Method. Bachelor’s thesis, Technical University of Munich (2013)

    Google Scholar 

  4. Deaton, J.D., Grandhi, R.V.: A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct. Multidiscip. Optim. 49(1), 1–38 (2014)

    Article  MathSciNet  Google Scholar 

  5. Dick, C., Georgii, J., Westermann, R.: A real-time multigrid finite hexahedra method for elasticity simulation using CUDA. Simul. Model. Pract. Theory 19(2), 801–816 (2011)

    Article  Google Scholar 

  6. Embar, A., Dolbow, J., Harari, I.: Imposing Dirichlet boundary conditions with Nitsche’s method and spline-based finite elements. Int. J. Numer. Methods Eng. 83(7), 877–898 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Gausemeier J, Echterhoff, N., Kokoschka, M., Wall, M.: Thinking ahead the Future of Additive Manufacturing–Analysis of Promising Industries (2011)

    Google Scholar 

  8. Gavranovic, S.: Topology Optimization using GPGPU. Master’s thesis, Technical University of Munich (2015)

    Google Scholar 

  9. General Electric jet engine bracket challange. https://grabcad.com/challenges/ge-jet-engine-bracket-challenge

  10. Hackbusch, W.: Multi-grid methods and applications. In: Springer Series in Computational Mathematics. Springer (2003)

    Google Scholar 

  11. Nvidia CUDA: Compute unified device architecture programming guide (2014)

    Google Scholar 

  12. Open CASCADE library. http://www.opencascade.org/

  13. Paulino, G.H.: Where are we in topology optimization? In: 10th World Congress on Structural and Multidisciplinary Optimization, Orlando, Florida (2013)

    Google Scholar 

  14. Schmidt, S., Schulz, V.: A 2589 line topology optimization code written for the graphics card. Comput. Vis. Sci. 14(6), 249–256 (2011)

    Article  MathSciNet  Google Scholar 

  15. Sigmund, O.: A 99 line topology optimization code written in Matlab. Struct. Multidiscip. Optim. 21(2), 120–127 (2001)

    Article  MathSciNet  Google Scholar 

  16. Suresh, K.: Efficient generation of large-scale pareto-optimal topologies. Struct. Multidiscip. Optim. 47(1), 49–61 (2013)

    Article  MathSciNet  Google Scholar 

  17. Wohlers Associates: Wohlers Report 2014-3D Printing and Additive Manufacturing State of the Industry (2014)

    Google Scholar 

  18. Zander, N.: The Finite Cell Method for Linear Thermoelasticity. Master’s thesis, Technical University of Munich (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stefan Gavranovic or Dirk Hartmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gavranovic, S., Hartmann, D., Wever, U. (2019). Topology Optimization Using GPGPU. In: Minisci, E., Vasile, M., Periaux, J., Gauger, N., Giannakoglou, K., Quagliarella, D. (eds) Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences. Computational Methods in Applied Sciences, vol 48. Springer, Cham. https://doi.org/10.1007/978-3-319-89988-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89988-6_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89986-2

  • Online ISBN: 978-3-319-89988-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics