Advertisement

Fault Diagnosis Inverse Problems

  • Lídice Camps Echevarría
  • Orestes Llanes Santiago
  • Haroldo Fraga de Campos Velho
  • Antônio José da Silva Neto
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 763)

Abstract

This chapter deals with FDI as an Inverse Problem. Section 2.1 presents and formalizes Fault Diagnosis as an Inverse Problem. In Sect. 2.1, it is also formalized a new methodology for Fault Diagnosis: Fault Diagnosis—Inverse Problem Methodology (FD-IPM). Section 2.2 describes the mathematical models to be used by FD-IPM. Section 2.3 describes an alternative approach for determining uniqueness in Fault Diagnosis Inverse Problems, which is based on the structural analysis of the model that describes the system.

References

  1. 22.
    Cao, H., Haiwen, Y., Zhao M. Shi Jian, S., Limei, Z., Xin, G.: The fault diagnosis of aircraft power system based on inverse problem of fuzzy optimization. Part G: J. Aerosp. Eng. 230(6), 1059–1074 (2016)Google Scholar
  2. 31.
    Ding, S.X.: Model-Based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools. Springer, Berlin (2008)Google Scholar
  3. 35.
    Duarte, C., Quiroga, J.: PSO algorithm for parameter identification in a DC motor. Rev. Fac. Ing. Univ. Antioquia 55, 116–124 (2010). (In Spanish)Google Scholar
  4. 36.
    Dulmage, A., Mendelsohn, N.: Coverings of bipartite graphs. Can. J. Math. 10(5), 517–534 (1958)MathSciNetCrossRefGoogle Scholar
  5. 41.
    Florin Metenidin, M., Witczak, M., Korbicz, J.: A novel genetic programming approach to nonlinear system modelling: application to the DAMADICS benchmark problem. Eng. Appl. Artif. Intell. 17(4), 363–370 (2004)CrossRefGoogle Scholar
  6. 42.
    Frank, P.M.: Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy – a survey and some new results. Automatica 26(3), 459–474 (1990)MathSciNetCrossRefGoogle Scholar
  7. 61.
    Isermann, R.: Model based fault detection and diagnosis. Status and applications. Annu. Rev. Control 29(1), 71–85 (2005)CrossRefGoogle Scholar
  8. 77.
    Krysander, M., Aslund, J., Frisk, E.: An efficient algorithm for finding minimal overconstrained subsystems for model-based diagnosis. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 38(1), 197–206 (2008)CrossRefGoogle Scholar
  9. 78.
    Krysander, M., Frisk, E.: Sensor placement for fault diagnosis. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 38(6), 1398–1410 (2008)CrossRefGoogle Scholar
  10. 82.
    Liu, Q., Wenyuan, L.: The study of fault diagnosis based on particle swarm optimization algorithm. Comput. Informa. Sci. 2(2), 87–91 (2009)Google Scholar
  11. 86.
    Lunze, J.: Laboratory three tanks system -benchmark for the reconfiguration problem. Tech. rep., Technical University of Hamburg-Harburg, Institute of Control Engineering, Germany (1998)Google Scholar
  12. 97.
    Ogata, K.: Modern Control Engineering. Prentice-Hall, Englewood Cliffs, NJ (1998)zbMATHGoogle Scholar
  13. 106.
    Samanta, B., Nataraj, C.: Use of particle swarm optimization for machinery fault detection. Eng. Appl. Artif. Intell. 22(2), 308–316 (2009)CrossRefGoogle Scholar
  14. 111.
    Silva Neto, A.J., Becceneri, J.C., Campos Velho, H.F. (eds.): Computational Intelligence Applied to Inverse Problems in Radiative Transfer. EdUERJ, Rio de Janeiro, Brazil (2016)Google Scholar
  15. 114.
    Simani, S., Patton, R.J.: Fault diagnosis of an industrial gas turbine prototype using a system identification approach. Control Eng. Pract. 16(7), 769–786 (2008)CrossRefGoogle Scholar
  16. 115.
    Simani, S., Fantuzzi, C., Patton, R.J.: Model-Based Fault Diagnosis in Dynamic Systems Using Identification Techniques. Springer, New York (2002)Google Scholar
  17. 133.
    Wang, L., Niu, Q., Fei, M.: A novel quantum ant colony optimization algorithm and its application to fault diagnosis. Trans. Inst. Meas. Control 30(3/4), 313–329 (2008)CrossRefGoogle Scholar
  18. 135.
    Witczak, M.: Advances in model based fault diagnosis with evolutionary algorithms and neural networks. Int. J. Appl. Math. Comput. Sci. 16(1), 85–99 (2006)MathSciNetzbMATHGoogle Scholar
  19. 143.
    Yang, E., Xiang, H., Guand, D., Zhang, Z.: A comparative study of genetic algorithm parameters for the inverse problem-based fault diagnosis of liquid rocket propulsion systems. Int. J. Autom. Comput. 4(3), 255–261 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Lídice Camps Echevarría
    • 1
  • Orestes Llanes Santiago
    • 2
  • Haroldo Fraga de Campos Velho
    • 3
  • Antônio José da Silva Neto
    • 4
  1. 1.Centro de Estudios de MatemáticaUniversidad Tecnológica de La Habana José, Antonio Echeverría, CUJAEMarianaoCuba
  2. 2.Dpto. de Automática y ComputaciónUniversidad Tecnológica de La Habana José, Antonio Echeverría, CUJAEMarianaoCuba
  3. 3.National Institute for Space Research, INPESão José dos CamposBrazil
  4. 4.Instituto PolitécnicoUniversidade do Estado do Rio de Janeiro, UERJNova FriburgoBrazil

Personalised recommendations