Model Based Fault Diagnosis and Inverse Problems

  • Lídice Camps Echevarría
  • Orestes Llanes Santiago
  • Haroldo Fraga de Campos Velho
  • Antônio José da Silva Neto
Part of the Studies in Computational Intelligence book series (SCI, volume 763)


This chapter introduces the main concepts and ideas concerning Model based Fault Diagnosis in Sect. 1.1. Fault Diagnosis based on parameter estimation is presented in Sect. 1.2 and Inverse Problems are briefly introduced in Sect. 1.3.


  1. 2.
    Angeli, C., Chatzinikolaou, A.: On-line fault detection techniques for technical systems: a survey. Int. J. Comput. Sci. Appl. I(I), 22–30 (2004)Google Scholar
  2. 5.
    Barbosa Muniz, W., Campos Velho, H.F., Manuel Ramos, F.: A comparison of some inverse methods for estimating the initial condition of the heat equation. J. Comput. Appl. Math. 103, 145–163 (1999)MathSciNetCrossRefGoogle Scholar
  3. 6.
    Bauer, F., Hohage, T., Munk, A.: Iteratively regularized Gauss-Newton method for nonlinear inverse problems with random noise. SIAM J. Numer. Anal. 47, 1827–1846 (2009)MathSciNetCrossRefGoogle Scholar
  4. 9.
    Beck, J.V.: Combined parameter and function estimation in heat transfer with application to contact conductance. J. Heat Trans. 110(4b), 1046–1058 (1998)CrossRefGoogle Scholar
  5. 16.
    Camacho, O., Padilla, D., Gouveia, J.L.: Fault diagnosis based on multivariate statistical techniques. Rev. Téc. Ing. Univ. Zulia. 30(3), 253–262 (2007)Google Scholar
  6. 17.
    Campos Velho, H.F.: Inverse Problems in Space Research. SBMAC, Sao Carlos, Brazil (2008)Google Scholar
  7. 24.
    Chen, J., Patton, R.J.: Robust Model-Based Fault Diagnosis for Dynamic Systems. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  8. 29.
    de Miguel, L.J., Blázquez, L.F.: Fuzzy logic-based decision-making for fault diagnosis in a DC motor. Eng. Appl. Artif. Intell. 18(1), 423–450 (2005)Google Scholar
  9. 31.
    Ding, S.X.: Model-Based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools. Springer, Berlin (2008)Google Scholar
  10. 39.
    Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer Academic Publishers, Dordrecht (1996)CrossRefGoogle Scholar
  11. 40.
    Fliess, M., Join, C., Mounier, H.: An introduction to nonlinear fault diagnosis with an application to a congested internet router. In: Advances in Communication and Control Networks. Lecture Notes in Control and Information Sciences. Springer, Berlin (2004)CrossRefGoogle Scholar
  12. 41.
    Florin Metenidin, M., Witczak, M., Korbicz, J.: A novel genetic programming approach to nonlinear system modelling: application to the DAMADICS benchmark problem. Eng. Appl. Artif. Intell. 17(4), 363–370 (2004)Google Scholar
  13. 42.
    Frank, P.M.: Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy – a survey and some new results. Automatica 26(3), 459–474 (1990)MathSciNetCrossRefGoogle Scholar
  14. 43.
    Frank, P.M.: Analytical and qualitative model-based fault diagnosis – a survey and some new results. Eur. J. Control 2(1), 6–28 (1996)CrossRefGoogle Scholar
  15. 44.
    Frank, P.M., Koeppen-Selinger, B.: New developments using AI in fault diagnosis. Eng. Appl. Artif. Intell. 10(1), 3–14 (1997)CrossRefGoogle Scholar
  16. 51.
    Hadamard, J.: Sur les problèmes aux dérivées partielles et leur signification physique, pp. 49–52. Princeton University Bulletin, Princeton, NJ (1902)Google Scholar
  17. 53.
    Henrique Terra, M., Tinós, T.R.: Fault detection and isolation in robotic manipulators via neural networks: a comparison among three architectures for residual analysis. J. Robot. Syst. 7(18), 367–374 (2001)Google Scholar
  18. 55.
    Hoefling, T., Isermann, R.: Fault detection based on adaptive parity equations and single-parameter tracking. Control Eng. Pract. 4(10), 1361–1369 (1996)Google Scholar
  19. 56.
    Hohmann, H.: Automatische ueberwachung und fehlerdiagnose am werkzeugmaschinen. Ph.D. thesis, Technische Hochschule Darmstadt (1987)Google Scholar
  20. 57.
    Isermann, R.: Process fault detection based on modelling and estimation methods – a survey. Automatica 20(4), 387–404 (1984)CrossRefGoogle Scholar
  21. 58.
    Isermann, R.: Fault diagnosis of machines via parameter estimation and knowledge processing. Automatica 29(4), 815–835 (1993)MathSciNetCrossRefGoogle Scholar
  22. 59.
    Isermann, R.: Model based fault detection and diagnosis methods. In: American Control Conference, pp. 1605–1609 (1995)Google Scholar
  23. 60.
    lsermann, R.: Supervision, fault-detection and fault-diagnosis methods- an introduction. Control Eng. Pract. 5(5), 639–652 (1997)Google Scholar
  24. 61.
    Isermann, R.: Model based fault detection and diagnosis. Status and applications. Annu. Rev. Control 29(1), 71–85 (2005)CrossRefGoogle Scholar
  25. 62.
    Isermann, R.: Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance. Springer, Berlin (2006)CrossRefGoogle Scholar
  26. 63.
    Isermann, R.: Fault-Diagnosis Applications: Model-Based Condition Monitoring: Actuators, Drives, Machinery, Plants, Sensors, and Fault-tolerant Systems. Springer, Berlin (2011)CrossRefGoogle Scholar
  27. 64.
    Isermann, R., Ballé, P.: Trends in the application of model-based fault detection and diagnosis of technical processes. Control Eng. Pract. 5(5), 709–719 (1997)CrossRefGoogle Scholar
  28. 66.
    Kanović, Z., Rapaić, M.R., Jeliićc, Z.D.: Generalized particle swarm optimization algorithm – theoretical and empirical analysis with application in fault detection. Appl. Math. Comput. 217(24), 10175–10186 (2011)CrossRefGoogle Scholar
  29. 68.
    Keller, J.B.: Inverse problems. Am. Math. Mon. 83, 107–118 (1976)MathSciNetCrossRefGoogle Scholar
  30. 74.
    Knupp, D.C., Silva Neto, A.J., Sacco, W.F.: Estimation of radiative properties with the particle collision algorithm. In: Inverse Problems, Design and Optimization Symposium, Miami, Florida (2007)Google Scholar
  31. 76.
    Krishnaswami, V., Luh, G.C., Rizzoni, G.: Nonlinear parity equation based residual generation for diagnosis of automotive engine faults. Control Eng. Pract. 3(10), 1385–1392 (1995)CrossRefGoogle Scholar
  32. 80.
    Li, Z., Dahhou, B.: A new fault isolation and identification method for nonlinear dynamic systems: application to a fermentation process. Appl. Math. Model. 32, 2806–2830 (2008)MathSciNetCrossRefGoogle Scholar
  33. 82.
    Liu, Q., Wenyuan, L.: The study of fault diagnosis based on particle swarm optimization algorithm. Comput. Informa. Sci. 2(2), 87–91 (2009)Google Scholar
  34. 84.
    Lobato, F.S., Steffen, V., Silva Neto, A.J.: Solution of inverse radiative transfer problems in two-layer participating media with differential evolution. Inverse Prob. Sci. Eng. 18(2), 183–195 (2009)MathSciNetCrossRefGoogle Scholar
  35. 85.
    Lobato, F.S., Steffen, V., Silva Neto, A.J.: Solution of the coupled inverse conduction-radiation problem using multi-objective optimization differential evolution. In: 8th World Congress on Structural and Multidisciplinary Optimization. Lisboa, Portugal (2009)Google Scholar
  36. 88.
    Mauryaa, M.R., Rengaswamy, R., Venkatasubramaniana, V.: Fault diagnosis using dynamic trend analysis: a review and recent developments. Eng. Appl. Artif. Intell. 20(2), 133–146 (2007)CrossRefGoogle Scholar
  37. 89.
    Metenidin, M.F., Witczak, M., Korbicz, J.: A novel genetic programming approach to nonlinear system modelling: application to the DAMADICS benchmark problem. Eng. Appl. Artif. Intell. 24, 958–967 (2011)Google Scholar
  38. 92.
    Morozov, V.A.: Regularization Methods for Ill- Posed Problems. CRC Press, Boca Raton, FL (1993)Google Scholar
  39. 93.
    Mosegaard, K., Tarantola, A.: Chapter Probabilistic approach to inverse problems. In: International Handbook of Earthquake and Engineering Seismology, vol. A, pp. 237–265. Academic, London (2001)Google Scholar
  40. 94.
    Moura Neto, F.D., Silva Neto, A.J.: An Introduction to Inverse Problems with Applications. Springer, New York (2012)Google Scholar
  41. 95.
    Narasimhana, S., Vachhani, P., Rengaswamya, R.: New nonlinear residual feedback observer for fault diagnosis in nonlinear systems. Automatica 44, 2222–2229 (2008)MathSciNetCrossRefGoogle Scholar
  42. 96.
    Odgaard, P.F., Matajib, B.: Observer-based fault detection and moisture estimating in coal mills. Control Eng. Pract. 16, 909–921 (2008)CrossRefGoogle Scholar
  43. 97.
    Ogata, K.: Modern Control Engineering. Prentice-Hall, Englewood Cliffs, NJ (1998)Google Scholar
  44. 98.
    Parker, R.L.: Geophysical Inverse Theory. Princeton University Press, Princeton, NJ (1994)Google Scholar
  45. 99.
    Patton, R.J., Chen, J.: A review of parity space approaches to fault diagnosis. In: IFAC SAFEPROCESS Symposium (1991)CrossRefGoogle Scholar
  46. 103.
    Ramos, F.M., Velho, H.F.C.: Reconstruction of geoelectric conductivity distributions using a first-order minimum entropy technique. In: Proceeding of the 2nd International Conference on Inverse Problems in Engineering: Theory and Practice, vol. 2, pp. 195–206. Le Croisic, France (1996)Google Scholar
  47. 104.
    Sacco, W.F., Oliveira, C.R.E.: A new stochastic optimization algorithm based on particle collisions. In: 2005 ANS Annual Meeting, Transactions of the American Nuclear Society (2005)Google Scholar
  48. 105.
    Sacco. W.F. Oliveira, C.R.E., Pereira, C.M.N.A.: Two stochastic optimization algorithms applied to nuclear reactor core design. Prog. Nucl. Energy 48(6), 525–539 (2006)CrossRefGoogle Scholar
  49. 106.
    Samanta, B., Nataraj, C.: Use of particle swarm optimization for machinery fault detection. Eng. Appl. Artif. Intell. 22(2), 308–316 (2009)CrossRefGoogle Scholar
  50. 109.
    Sharkey, A.J.C., Sharkey, N.E., Gopinath, O.C.: Diverse neural net solutions to a fault diagnosis problem. Tech. rep., Department of Computer Science, University of Sheffield (1999)Google Scholar
  51. 111.
    Silva Neto, A.J., Becceneri, J.C., Campos Velho, H.F. (eds.): Computational Intelligence Applied to Inverse Problems in Radiative Transfer. EdUERJ, Rio de Janeiro, Brazil (2016)Google Scholar
  52. 112.
    Silva Neto, A.J., Lugon Jr., J., Soliro, F.J.C.P., Biondi Neto, L., Santana, C.C., Lobato, F.S., Steffen Jr., V., Campos Velho, H.F., Souza, A.F., Camara L, D.T., Assis, E.G., Silva, F.M., Oliveira, G.P., Camps Echevarría, L., Llanes-Santiago, O.: Direct and Inverse Problems with Applications in Engineering – Research Collection. InTech, Rijeka, Croatia (2016)Google Scholar
  53. 113.
    Silva Neto, A.J., Llanes-Santiago, O., Silva, G.N. (eds.): Mathematical Modelling and Computational Intelligence in Engineering Applications. Springer, Cham (2016)zbMATHGoogle Scholar
  54. 114.
    Simani, S., Patton, R.J.: Fault diagnosis of an industrial gas turbine prototype using a system identification approach. Control Eng. Pract. 16(7), 769–786 (2008)CrossRefGoogle Scholar
  55. 115.
    Simani, S., Fantuzzi, C., Patton, R.J.: Model-Based Fault Diagnosis in Dynamic Systems Using Identification Techniques. Springer, New York (2002)Google Scholar
  56. 116.
    Smith, C.R., Grandy, W.T.: Maximum-Entropy and Bayesian Methods in Inverse Problems, Fundamental Theories of Physics. Springer, Dordrecht (1985)Google Scholar
  57. 117.
    Snieder, R., Trampert, J.: Inverse Problems in Geophysics. Samizdat Press (1999)Google Scholar
  58. 120.
    Sorsa, T., Koivo, H., Koivisto, H.: Neural networks in process fault diagnosis. IEEE Trans. Syst. Man Cybern. 21(4), 815–825 (1991)CrossRefGoogle Scholar
  59. 126.
    Tarantola, A.: Inverse Problem Theory. Elsevier, New York (1987)zbMATHGoogle Scholar
  60. 128.
    Tarantola, A., Valette, B.: Inverse problems=quest for information. J. Geophys. 50(3), 159–170 (1982)Google Scholar
  61. 130.
    Venkatasubramanian, V., Rengaswamy, R., Yin, K., Kavuri, S.N.: A review of process fault detection and diagnosis-part I: quantitative model-based methods. Comput. Chem. Eng. 27(3), 293–311 (2003)CrossRefGoogle Scholar
  62. 132.
    Venkatasubramanian, V., Rengaswamy, R., Yin, K., Kavuri, S.N.: A review of process fault detection and diagnosis-part III: process history based methods. Comput. Chem. Eng. 27(3), 327–346 (2003)CrossRefGoogle Scholar
  63. 133.
    Wang, L., Niu, Q., Fei, M.: A novel quantum ant colony optimization algorithm and its application to fault diagnosis. Trans. Inst. Meas. Control 30(3/4), 313–329 (2008)CrossRefGoogle Scholar
  64. 134.
    Willsky, A.S.: A survey of design methods for failure detection systems. Automatica 12(6), 601–611 (1976)MathSciNetCrossRefGoogle Scholar
  65. 135.
    Witczak, M.: Advances in model based fault diagnosis with evolutionary algorithms and neural networks. Int. J. Appl. Math. Comput. Sci. 16(1), 85–99 (2006)MathSciNetzbMATHGoogle Scholar
  66. 136.
    Witczak, M.: Modelling and Estimation Strategies for Fault Diagnosis of Non-Linear Systems From Analytical to Soft Computing Approaches. Springer, New York (2007)zbMATHGoogle Scholar
  67. 142.
    Yang, S.H., Chen, B.H., Wang, X.Z.: Neural network based fault diagnosis using unmeasurable inputs. Eng. Appl. Artif. Intell. 1 13(31), 345–356 (2000)CrossRefGoogle Scholar
  68. 143.
    Yang, E., Xiang, H., Guand, D., Zhang, Z.: A comparative study of genetic algorithm parameters for the inverse problem-based fault diagnosis of liquid rocket propulsion systems. Int. J. Autom. Comput. 4(3), 255–261 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Lídice Camps Echevarría
    • 1
  • Orestes Llanes Santiago
    • 2
  • Haroldo Fraga de Campos Velho
    • 3
  • Antônio José da Silva Neto
    • 4
  1. 1.Centro de Estudios de MatemáticaUniversidad Tecnológica de La Habana José, Antonio Echeverría, CUJAEMarianaoCuba
  2. 2.Dpto. de Automática y ComputaciónUniversidad Tecnológica de La Habana José, Antonio Echeverría, CUJAEMarianaoCuba
  3. 3.National Institute for Space Research, INPESão José dos CamposBrazil
  4. 4.Instituto PolitécnicoUniversidade do Estado do Rio de Janeiro, UERJNova FriburgoBrazil

Personalised recommendations