Photochemistry pp 179-213 | Cite as

# Charge and Energy Transfer Processes

## Abstract

In this chapter we shall present the peculiar features of charge and excitation energy transfer processes (CT and ET) that are of basic importance in photosynthesis, photovoltaics, and other areas of biochemistry and technology. The migration of charge or excitation energy between distinct chromophores implies a dramatic change in the electronic wavefunction, so the general nonadiabatic theory we have already discussed also applies to these processes. However, some peculiar features distinguish charge and energy transfer from other nonadiabatic processes. If the two chromophores are placed in two molecules free to move in gas or liquid phase, the transition can only take place during a collision or encounter, so the kinetics of bimolecular processes plays an essential role. However, just because their interaction is a basic requirement for the process to occur, in structured biological or artificial photosystems the single units are fixed at suitable relative positions and orientations. In typical situations, such arrangements also determine easily discernable spectral features. Whenever the interaction between the involved chromophores is not too large, the initial and final electronic states of the CT or ET process constitute a physically sound diabatic representation, which allows to analyze theoretically the main features of the dynamics.

## Keywords

Charge transfer Energy transfer Quenching Sensitization Exciton coupling## Supplementary material

## References

- 1.Subotnik, J.E., Cave, R.J., Steele, R.P., Shenvi, N.: The initial and final states of electron and energy transfer processes: diabatization as motivated by system-solvent interactions. J. Chem. Phys.
**130**, 234102/1–14 (2009)CrossRefGoogle Scholar - 2.Voityuk, A.A.: Fragment transition density method to calculate electronic coupling for excitation energy transfer. J. Chem. Phys.
**140**, 244117/1–7 (2014)CrossRefGoogle Scholar - 3.Voityuk, A.A.: Interaction of dark excited states. comparison of computational approaches. J. Phys. Chem. B
**119**, 7417–7421 (2015)CrossRefGoogle Scholar - 4.Curutchet, C., Mennucci, B.: Quantum chemical studies of light harvesting. Chem. Rev.
**117**, 294–343 (2017)CrossRefGoogle Scholar - 5.Favero, L., Granucci, G., Persico, M.: Dynamics of acetone photodissociation: a surface hopping study. Phys. Chem. Chem. Phys.
**15**, 20651–20661 (2013)CrossRefGoogle Scholar - 6.Rohatgi-Mukherjee, K.K.: Fundamentals of Photochemistry. New Age International, New Delhi (2017)Google Scholar
- 7.Raišys, S., Kazlauskas, K., Juršiėas, S., Simon, Y.C.: The role of triplet exciton diffusion in light-upconverting polymer glasses. ACS Appl. Mater. Interfaces
**8**, 15732–15740 (2016)CrossRefGoogle Scholar - 8.DeVries, P.L., Chang, C., George, T.F., Laskowski, B., Stallcop, J.R.: Computational study of alkali-metal - noble-gas collisions in the presence of nonresonant lasers: Na + Xe + \(\hbar \omega _1\) + \(\hbar \omega _2\) system. Phys. Rev.
**22**, 545–550 (1980)Google Scholar - 9.Angeli, C., Persico, M.: Quasi-diabatic and adiabatic states and potential energy curves for Na-Cd collisions and excimer formation. Chem. Phys.
**204**, 57–64 (1996)CrossRefGoogle Scholar - 10.Reiland, W., Tittes, H.-U., Hertel, I.V., Bonačić-Koutecký, V., Persico, M.: Stereochemical effects in the quenching of Na\(^*\;(3\,^2P)\) by CO: crossed beam experiment and ab initio CI potential energy surfaces. J. Chem. Phys.
**77**, 1908–1920 (1982)Google Scholar - 11.McWeeny, R.: Methods of Molecular Quantum Mechanics. Academic Press, London (1992)Google Scholar
- 12.Smith, M.B., Michl, J.: Singlet fission. Chem. Rev.
**110**, 6891–6936 (2010)CrossRefGoogle Scholar - 13.Dexter, D.L.: A theory of sensitized luminescence in solids. J. Chem. Phys.
**21**, 836–850 (1953)CrossRefGoogle Scholar - 14.Förster, T.: Transfer mechanisms of electronic excitation. Discuss. Faraday Soc.
**27**, 7–17 (1959)CrossRefGoogle Scholar - 15.Bottcher, C.J.: Theory of electric polarization. Elsevier, Amsterdam (1973)Google Scholar
- 16.Govorov, A., Martínez, P.L.H., Demir, H.V.: Understanding and Modeling Förster-Type Resonance Energy Transfer (FRET). Springer, Singapore (2016)CrossRefGoogle Scholar
- 17.Medintz, I., Hildebrandt, N. (eds.): Förster Resonance Energy Transfer (FRET). From Theory to Applications. Wiley, Weinheim (2014)Google Scholar
- 18.Romstad, D., Granucci, G., Persico, M.: Nonadiabatic transitions and interference in photodissociation dynamics. Chem. Phys.
**219**, 21–30 (1997)CrossRefGoogle Scholar - 19.Granucci, G., Mazzoni, M., Persico, M., Toniolo, A.: A computational study of the excited states of bilirubin IX. Phys. Chem. Chem. Phys.
**7**, 2594–2598 (2005)CrossRefGoogle Scholar - 20.Newton, M.D.: The role of solvation in electron transfer: theoretical and computational aspects. In: Cammi, R., Mennucci, B. (eds.) Continuum Solvation Models in Chemical Physics: From Theory to Applications, pp. 389–413. Wiley, Chichester (2007)Google Scholar
- 21.Marcus, R.A.: On the theory of electron transfer reactions VI. unified treatment for homogeneous and electrode reactions. J. Chem. Phys.
**43**, 679–701 (1965)CrossRefGoogle Scholar - 22.Cave, R.J., Edwards, S.T., Kouzelos, J.A., Newton, M.D.: Reduced electronic spaces for modeling donor/acceptor interactions. J. Phys. Chem. B
**114**, 14631–14641 (2010)CrossRefGoogle Scholar - 23.Cave, R.J., Newton, M.D.: Multistate treatments of the electronic coupling in donor-bridge-acceptor systems: insights and caveats from a simple model. J. Phys. Chem. A
**118**, 7221–7234 (2014)CrossRefGoogle Scholar - 24.Wibowo, M., Broer, R., Havenith, R.W.A.: A rigorous nonorthogonal configuration interaction approach for the calculation of electronic couplings between diabatic states applied to singlet fission. Comput. Theor. Chem.
**1116**, 190–194 (2017)CrossRefGoogle Scholar - 25.Plasser, F., Granucci, G., Pittner, J., Barbatti, M., Persico, M., Lischka, H.: Surface hopping dynamics using a locally diabatic formalism: charge transfer in the ethylene dimer cation and excited state dynamics in the 2-pyridone dimer. J. Chem. Phys.
**137**, 22A514/1–13 (2012)CrossRefGoogle Scholar - 26.Burghardt, I., Hynes, J.T.: Excited-state charge transfer at a conical intersection: effects of an environment. J. Phys. Chem. A
**110**, 11411–11423 (2006)CrossRefGoogle Scholar - 27.Worth, G.A., Meyer, H.-D., Köppel, H., Cederbaum, L.S., Burghardt, I.: Using the MCTDH wavepacket propagation method to describe multimode non-adiabatic dynamics. Int. Rev. Phys. Chem.
**27**, 569–606 (2008)CrossRefGoogle Scholar - 28.Malhado, J.P., Spezia, R., Hynes, J.T.: Dynamical friction effects on the photoisomerization of a model protonated Schiff base in solution. J. Phys. Chem. A
**115**, 3720–3735 (2011)CrossRefGoogle Scholar - 29.Cimiraglia, R., Malrieu, J.-P., Persico, M., Spiegelmann, F.: Quasi diabatic states and dynamical couplings from ab initio CI calculations: a new proposal. J. Phys. B
**18**, 3073 (1985)CrossRefGoogle Scholar - 30.Cattaneo, P., Persico, M.: Ab initio determination of quasi-diabatic states for multiple reaction pathways. Chem. Phys.
**214**, 49 (1997)CrossRefGoogle Scholar - 31.Foster, J.M., Boys, S.F.: Canonical configurational interaction procedure. Rev. Mod. Phys.
**32**, 300 (1960)CrossRefGoogle Scholar - 32.Edmiston, C., Ruedenberg, K.: Localized atomic and molecular orbitals. Rev. Mod. Phys.
**35**, 457 (1963)CrossRefGoogle Scholar - 33.Magnasco, V., Perico, A.: Uniform localization of atomic and molecular orbitals I. J. Chem. Phys.
**47**, 971–981 (1967)CrossRefGoogle Scholar - 34.Magnasco, A., Perico, V.: Uniform localization of atomic and molecular orbitals II. J. Chem. Phys.
**48**, 800–808 (1968)CrossRefGoogle Scholar - 35.Pipek, J., Mezey, P.G.: A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions. J. Chem. Phys.
**90**, 4916–4926 (1989)CrossRefGoogle Scholar - 36.Høyvik, I.-M., Jansik, B., Jørgensen, P.: Pipek-Mezey localization of occupied and virtual orbitals. J. Comp. Chem.
**34**, 1456–1462 (2013)CrossRefGoogle Scholar - 37.Lehtola, S., Jónsson, H.: Pipek-Mezey orbital localization using various partial charge estimates. J. Chem. Theory Comput.
**10**, 642–649 (2014)CrossRefGoogle Scholar - 38.Zhang, C., Li, S.: An efficient localization procedure for large systems using a sequential transformation strategy. J. Chem. Phys.
**141**, 244106/1–8 (2014)CrossRefGoogle Scholar - 39.Heßelmann, A.: Local molecular orbitals from a projection onto localized centers. J. Chem. Theory Comput.
**12**, 2720–2741 (2016)CrossRefGoogle Scholar - 40.de Silva, P., Giebułtowski, M., Korchowiec, J.: Fast orbital localization scheme in molecular fragments resolution. Phys. Chem. Chem. Phys.
**14**, 546–552 (2012)CrossRefGoogle Scholar - 41.Zalesskaya, G.A., Sambor, E.G., Bely, N.N.: Photoinduced gas-phase electron transfer reactions. J. Fluor.
**14**, 173–180 (2004)CrossRefGoogle Scholar