Skip to main content

Molecular States

  • Chapter
  • First Online:
Photochemistry

Part of the book series: Theoretical Chemistry and Computational Modelling ((TCCM))

  • 2178 Accesses

Abstract

This chapter will introduce the quantum mechanical equation of motion, i.e., the time-dependent Schrödinger equation. We will show how the separation of variables can be exploited to partition the molecular wavefunction in translational, rotational, vibrational, and electronic components, with special emphasis on the Born–Oppenheimer approximation and its breakdown. We shall then provide an overview of the electronic structure and reactivity of excited states commonly found in organic molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Merzbacher, E.: Quantum Mechanics. Wiley, New York (1998)

    Google Scholar 

  2. Sakurai, J., Napolitano, J.: Modern Quantum Mechanics. Cambridge University Press, Cambridge (2017)

    Google Scholar 

  3. Atkins, P.W., Friedman, R.S.: Molecular Quantum Mechanics. Oxford University Press, Oxford (2010)

    Google Scholar 

  4. Levine, I.N.: Quantum Chemistry. Pearson, Cambridge (2014)

    Google Scholar 

  5. Michl, J., Bonačić-Koutecký, V.: Electronic Aspects of Organic Photochemistry. Wiley, New York (1990)

    Google Scholar 

  6. Klessinger, M., Michl, J.: Excited States and Photochemistry of Organic Molecules. VCH, New York (1995)

    Google Scholar 

  7. McWeeny, R.: Methods of Molecular Quantum Mechanics. Academic Press, London (1992)

    Google Scholar 

  8. de Graaf, C., Broer, R.: Magnetic Interactions in Molecules and Solids. Springer, Cham (2016)

    Book  Google Scholar 

  9. Greiner, W.: Quantum Mechanics. An Introduction. Springer, Heidelberg (2000)

    Google Scholar 

  10. Greiner, W.: Relativistic Quantum Mechanics. Wave Equations. Springer, Heidelberg (2000)

    Book  Google Scholar 

  11. Li, Z., Xiao, Y., Liu, W.: On the spin separation of algebraic two-component relativistic Hamiltonians. J. Chem. Phys. 137, 154114 (2012)

    Article  Google Scholar 

  12. van Lenthe, E., Snijders, J.G., Baerends, E.J.: The zero-order regular approximation for relativistic effects: the effect of spin-orbit coupling in closed shell molecules. J. Chem. Phys. 105, 6505–6516 (1996)

    Article  Google Scholar 

  13. Nakajima, T., Hirao, W.: The Douglas-Kroll-Hess approach. Chem. Rev. 112, 385–402 (2012)

    Article  CAS  Google Scholar 

  14. Marian, C.M.: Spin-orbit coupling and intersystem crossing in molecules. WIREs Comput. Mol. Sci. 2, 187–203 (2012)

    Article  CAS  Google Scholar 

  15. Holbrook, K.A., Pilling, M.J., Robertson, S.H.: Unimolecular Reactions. Wiley, Chichester (1996)

    Google Scholar 

  16. Tolman, R.C.: The Principles of Statistical Mechanics. Dover, Mineola (1979)

    Google Scholar 

  17. Beyer, T., Swinehart, D.F.: Algorithm 448. Number of multiply-restricted partitions. Comm. ACM 16, 379 (1973)

    Article  Google Scholar 

  18. Mota, R., Parafita, R., Giuliani, A., Hubin-Franskin, M.-J., Lourenço, J.M.C., Garcia, G., Hoffmann, S.V., Mason, N.J., Ribeiro, P.A., Raposo, M., Limão-Vieira, P.: Water VUV electronic state spectroscopy by synchrotron radiation. Chem. Phys. Lett. 416, 152–159 (2005)

    Article  CAS  Google Scholar 

  19. Rubio, M., Serrano-Andrés, L., Merchán, M.: Excited states of the water molecule: analysis of the valence and Rydberg character. J. Chem. Phys. 128, 104305 (2008)

    Article  Google Scholar 

  20. Jaffé, H.H., Orchin, M.: Theory and Applications of Ultraviolet Spectroscopy. Wiley, New York (1962)

    Google Scholar 

  21. Montalti, M., Credi, A., Prodi, L., Gandolfi, M.T.: Handbook of Photochemistry. CRC Press, Boca Raton (2006)

    Google Scholar 

  22. Dabestani, R., Ivanov, I.N.: A compilation of physical, spectroscopic and photophysical properties of polycyclic aromatic hydrocarbons. Photochem. Photobiol. 70, 10–34 (1999)

    CAS  Google Scholar 

  23. Klán, P., Wirz, J.: Photochemistry Of Organic Compounds: From Concepts to Practice. Wiley, Chichester (2009)

    Book  Google Scholar 

  24. Turro, N.J., Ramamurthy, V., Scaiano, J.C.: Modern Molecular Photochemistry of Organic Molecules. University Science Books, Sausalito (2010)

    Google Scholar 

  25. Hoffmann, R., Woodward, R.B.: Conservation of orbital symmetry. Acc. Chem. Res. 1, 17–22 (1968)

    Article  CAS  Google Scholar 

  26. Reichardt, C., Welton, T.: Solvents and Solvent Effects in Organic Chemistry. Wiley-VCH, Weinheim (2011)

    Google Scholar 

  27. Lakowicz, J.R.: Principles of Fluorescence Spectroscopy. Springer, New York (2006)

    Book  Google Scholar 

  28. Mennucci, B., Cammi, R. (eds.): Continuum Solvation Models in Chemical Physics. Wiley, Chichester (2007)

    Google Scholar 

  29. Baba, H., Goodman, L., Valenti, P.C.: Solvent effects on the fluorescence spectra of diazines. Dipole moments in the (n,\(\pi ^*\)) excited states. J. Am. Chem. Soc. 88, 5410–5415 (1966)

    Article  CAS  Google Scholar 

  30. Kumar, ChV, Chattopadhyay, S.K., Das, P.K.: A laser flash photolysis study of pyrene-1-aldehyde. Intersystem crossing efficiency, photoreactivity and triplet state properties in various solvents. Photochem. Photobiol. 38, 141–152 (1983)

    Article  CAS  Google Scholar 

  31. Szabo, A., Ostlund, N.S.: Modern Quantum Chemistry. Introduction to Advanced Electronic Structure Theory. Dover, Mineola (1996)

    Google Scholar 

  32. Helgaker, T., Jørgensen, P., Olsen, J.: Molecular Electronic-Structure Theory. Wiley, Chichester (2000)

    Book  Google Scholar 

  33. Hiberty, P.C., Humbel, S., Byrman, C.P., van Lenthe, J.H.: Compact valence bond functions with breathing orbitals: application to the bond dissociation energies of F\(_2\) and FH. J. Chem. Phys. 101, 5969–5976 (1994)

    Article  CAS  Google Scholar 

  34. Schmidt, M.W., Gordon, M.S.: The construction and interpretation of MCSCF wavefunctions. Annu. Rev. Phys. Chem. 49, 233–266 (1998)

    Article  CAS  Google Scholar 

  35. Andersson, K., Malmqvist, P., Roos, B.O.: Second-order perturbation theory with a complete active space self-consistent field reference function. J. Chem. Phys. 96, 1218–1226 (1992)

    Article  CAS  Google Scholar 

  36. Angeli, C., Pastore, M., Cimiraglia, R.: New perspectives in multireference perturbation theory: the n-electron valence state approach. Theor. Chem. Acc. 117, 743–754 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Persico .

Problems

Problems

2.1

Consider a one dimensional system described by the following Hamiltonian

$$ \hat{H}(x) = -\frac{\hbar ^2}{2m}\frac{{\mathrm{d}}^2}{{\mathrm{d}}x^2} - F x \qquad (F > 0) $$

appropriate, for example, for a particle of mass m and charge q in the presence of a constant electric field \(E_0\) (in that case \(F=q E_0\)). Working in the momentum representation (use \(x={\mathrm{i}}\hbar {\mathrm{d}}/{\mathrm{d}}p\)), evaluate the time evolution of a Gaussian wavepacket, i.e., find \(\varPsi (p,t)\) given \(\varPsi (p,0) = (2\alpha /\pi )^{-1/4}\exp (-\alpha p^2)\), with \(\alpha > 0\).

2.2

The potential energy of a Morse oscillator is \(V(x) = D(1-{\mathrm{e}}^{-a(x-x_0)})^2\), where D is the well depth. The corresponding energy eigenvalues are

$$ E_v = \hbar \omega (v+1/2) + \frac{\hbar ^2\omega ^2}{4 D} (v+1/2)^2 \qquad \omega = a\sqrt{2D/m} $$

where \(v = 0,1,\ldots \) and m is the mass of the oscillator. Evaluate the density of states for a single Morse oscillator and use it to obtain a classical expression (i.e., without taking into account the quantization of energy) for the density of states of two noninteracting identical Morse oscillators.

2.3

In molecules where \(S_1\) and \(T_1\) are close in energy, the “inverse” ISC from \(T_1\) to \(S_1\) may be characterized by a non-negligible rate constant \(K_{invISC}\). Compute \(K_{invISC}\) for acetone, according to the following data/assumptions: (i) the molecule is isolated, so that its energy is constant, and in particular \(E= 1\) eV above the ZPE of \(T_1\); (ii) the lifetimes of \(S_1\) and \(T_1\) are long enough to reach microcanonical equilibrium before decaying to \(S_0\); (iii) the adiabatic (i.e., minimum-minimum) energy difference between \(S_1\) and \(T_1\) is \(\varDelta E=0.25\) eV; (iv) \(S_1\) and \(T_1\) have the same vibrational frequencies; (v) the rate constant for the ISC \(S_1 \rightarrow T_1\) is \(K_{ISC} = 3.5\) ns\(^{-1}\).

2.4

Four different Slater determinants can be written with two electrons in two orbitals. The related matrix elements of \(H_{el}\) are

$$ \begin{aligned} \left\langle \phi _i\wedge \overline{\phi }_i \left| \hat{H}_{el} \right| \phi _i\wedge \overline{\phi }_i \right\rangle&= 2\varepsilon _i + J_{ii} \\ \left\langle \phi _i\wedge \overline{\phi }_j \left| \hat{H}_{el} \right| \phi _i\wedge \overline{\phi }_j \right\rangle&= \varepsilon _i + \varepsilon _j + J_{ij} \\ \left\langle \overline{\phi _i}\wedge \phi _j \left| \hat{H}_{el} \right| \phi _i\wedge \overline{\phi }_j \right\rangle&= -K_{ij} \end{aligned} $$

with \(i,j=1,2\) and where \(\phi _i\) (respectively, \(\overline{\phi }_i\)) label a spin-orbital with spin part \(\alpha \) (respectively, \(\beta \)). \(\varepsilon _i\) are the orbital energies (\(\varepsilon _1 \le \varepsilon _2\)). \(J_{ij}\) are the Coulomb integrals, representing the electrostatic repulsion between the two charge clouds \(\left| \phi _i\right| ^2\) and \(\left| \phi _j\right| ^2\). \(K_{12}\) is the exchange integral, see Eq. (2.93). Both the Coulomb and the exchange integrals are positive quantities and we assume \(J_{ii} > J_{ij}\). Write \(\varphi _{S_0}\), \(\varphi _{S_1}\) and \(\varphi _{T_1}\) in terms of the three Slater determinants \(\phi _1\wedge \overline{\phi }_1\), \(\phi _1\wedge \overline{\phi }_2\), and \(\overline{\phi }_1\wedge \phi _2\). Evaluate the corresponding energies. Which one is the ground state when the two orbitals are degenerate (i.e., \(\varepsilon _1=\varepsilon _2\))?

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Persico, M., Granucci, G. (2018). Molecular States. In: Photochemistry. Theoretical Chemistry and Computational Modelling. Springer, Cham. https://doi.org/10.1007/978-3-319-89972-5_2

Download citation

Publish with us

Policies and ethics