Skip to main content

Assessing Representational Competence with Eye Tracking Technology

  • Chapter
  • First Online:
Towards a Framework for Representational Competence in Science Education

Part of the book series: Models and Modeling in Science Education ((MMSE,volume 11))

Abstract

Although it may appear trivial, the first step in developing representational competence is literally looking at a representation. This chapter focuses on eye tracking technology as a tool for assessing visual attention while using representations, particularly with regard to understanding the underlying cognitive processes of representational competence. This technology is not new, but its use is expanding in science education. We give an overview of how eye tracking technology works, what it can measure, and how this type of data can be used as evidence for representation use. In combination with verbal and written data, eye tracking technology might be able to more finely distinguish between novices and experts in the visual use of representations and capture levels of representational competence. We synthesize what has been learned from past uses of this technology in science education and provide insights for potential future uses as an assessment of representational competence to help further this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The five levels originally also include information about building representations. To focus on the visual aspect, this section will only mention aspects of reading representations besides level 1 for which no information about reading is provided. For a complete description of levels see Kozma and Russell (2005), p. 133.

  2. 2.

    For a detailed history of eye tracking see e.g., Duchowski 2007, pp. 51–59

  3. 3.

    This chapter will mainly focus on remote systems.

  4. 4.

    For an extensive introduction into theory and practice of eye tracking technology see Duchowski (2007) and Holmqvist et al. (2011).

  5. 5.

    Duchowski (2007) points out that the eye-mind assumption might be limited and - under ideal conditions – eye tracking should be complemented by brain activity measures. He gives the example of astronomers who purposefully separate attention from gaze direction when they search for faint stars which cannot be spotted when directly looking at them. Furthermore, experts are able to perceive details of representations parafoveally as described in “Assessing Differences between Experts and Novices” of this chapter.

  6. 6.

    There are also other types of eye movements like smooth pursuits (the eye follows a moving object) and nystagmus (counterbalancing head movements) which do not play a role in assessing RC.

  7. 7.

    Ladder cladograms show a seemingly continuous line from the root to one taxon which is due to the high level of abstraction (see Figure 2.2 and 2.3). Students often have difficulties to understand the hierarchical character of ladder cladograms and rather perceive the “backbone” as a single line (Novick et al. 2012).

  8. 8.

    The study describes RC with PTs both for tree reading and tree building. Since this chapter focuses on visual aspects, it will only address tree reading. For further information about tree building, see Halverson and Friedrichsen (2013).

References

  • Baum, D. A., DeWitt Smith, S., & Donovan, S. S. S. (2005). The tree-thinking challenge. Science, 310(5750), 979–980.

    Article  Google Scholar 

  • Boucheix, J.-M., & Lowe, R. K. (2010). An eye-tracking comparison of external pointing cues and internal continuous cues in learning with complex animations. Learning and Instruction, 20(2), 123–135.

    Article  Google Scholar 

  • Brinkman, J. A. (1993). Verbal protocol accuracy in fault diagnosis. Ergonomics, 36(11), 1381–1397.

    Article  Google Scholar 

  • Canham, M., & Hegarty, M. (2010). Effects of knowledge and display design on comprehension of complex graphics. Learning and Instruction, 20(2), 155–166.

    Article  Google Scholar 

  • Chi, M. T., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5(2), 121–152.

    Article  Google Scholar 

  • Cook, M., Wiebe, E. N., & Carter, G. (2008). The influence of prior knowledge on viewing and interpreting graphics with macroscopic and molecular representations. Science Education, 92(5), 848–867.

    Article  Google Scholar 

  • Duchowski, A. T. (2002). A breadth-first survey of eye-tracking applications. Behavior Research Methods, Instruments, & Computers, 34(4), 455–470.

    Article  Google Scholar 

  • Duchowski, A. T. (2007). Eye tracking methodology: Theory and practice (2nd ed.). London: Springer. With permission of Springer.

    Google Scholar 

  • Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102, 211–245.

    Article  Google Scholar 

  • Ericsson, K. A., & Lehmann, A. C. (1996). Expert and exceptional performance: Evidence of maximal adaptations to task constraints. Annual Review of Psychology, 47, 273–305.

    Article  Google Scholar 

  • Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis: Verbal reports as data (Rev. ed.). Cambridge, MA: MIT Press.

    Google Scholar 

  • Feusner, M., & Lukoff, B. (2008). Testing for statistically significant differences between groups of scan patterns. In S. N. Spencer (Ed.), Proceedings of the 2008 symposium on eye tracking research & applications (pp. 43–46). New York: ACM.

    Chapter  Google Scholar 

  • Gegenfurtner, A., Lehtinen, E., & Säljö, R. (2011). Expertise differences in the comprehension of visualizations: A meta-analysis of eye-tracking research in professional domains. Educational Psychology Review, 23(4), 523–552.

    Article  Google Scholar 

  • Gilbert, S. W. (1991). Model building and a definition of science. Journal of Research in Science Teaching, 28(1), 73–79.

    Article  Google Scholar 

  • van Gog, T., Paas, F., Merriënboer, v., Jeroen, J. G., & Witte, P. (2005). Uncovering the problem-solving process: Cued retrospective reporting versus concurrent and retrospective reporting. Journal of Experimental Psychology. Applied, 11(4), 237–244.

    Article  Google Scholar 

  • van Gog, T., Jarodzka, H., Scheiter, K., Gerjets, P., & Paas, F. (2009). Attention guidance during example study via the model’s eye movements. Computers in Human Behavior, 25(3), 785–791.

    Article  Google Scholar 

  • Grünkorn, J., Upmeier zu Belzen, A., & Krüger, D. (2013). Assessing Students’ understandings of biological models and their use in science to evaluate a theoretical framework. International Journal of Science Education, 36(10), 1651–1684.

    Article  Google Scholar 

  • Haider, H., & Frensch, P. A. (1999). Eye movement during skill acquisition: More evidence for the information reduction hypothesis. Journal of Experimental Psychology: Learning, Memory, & Cognition, 25, 172–190.

    Google Scholar 

  • Halverson, K. L. (2011). Improving tree-thinking one learnable skill at a time. Evolution: Education and Outreach, 4(1), 95–106.

    Google Scholar 

  • Halverson, K. L., & Friedrichsen, P. (2013). Learning tree thinking: Developing a new framework of representational competence. In D. F. Treagust & C.-Y. Tsui (Eds.), Models and modeling in science education: Vol. 7, Multiple Representations in Biological Education (pp. 185–201). Dordrecht: Springer.

    Google Scholar 

  • Halverson, K. L., Pires, C. J., & Abell, S. K. (2011). Exploring the complexity of tree thinking expertise in an undergraduate systematics course. Science Education, 95(5), 794–823.

    Article  Google Scholar 

  • Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., & van de Weijer, J. (2011). Eye tracking: A comprehensive guide to methods and measures. Oxford, New York: Oxford University Press.

    Google Scholar 

  • Jarodzka, H., Scheiter, K., Gerjets, P., & van Gog, T. (2010). In the eyes of the beholder: How experts and novices interpret dynamic stimuli. Learning and Instruction, 20(2), 146–154.

    Article  Google Scholar 

  • Jarodzka, H., Balslev, T., Holmqvist, K., Nyström, M., Scheiter, K., Gerjets, P., & Eika, B. (2012). Conveying clinical reasoning based on visual observation via eye-movement modeling examples. Instructional Science, 40(5), 813–827.

    Article  Google Scholar 

  • Jarodzka, H., van Gog, T., Dorr, M., Scheiter, K., & Gerjets, P. (2013). Learning to see: Guiding students’ attention via a Model's eye movements fosters learning. Learning and Instruction, 25, 62–70.

    Article  Google Scholar 

  • Just, M. A., & Carpenter, P. A. (1980). A theory of reading: From eye fixations to comprehension. Psychological Review, 87, 329–354.

    Article  Google Scholar 

  • Koning, d., Björn, B., Tabbers, H. K., Rikers, R. M., & Paas, F. (2010). Attention guidance in learning from a complex animation: Seeing is understanding? Learning and Instruction, 20(2), 111–122.

    Article  Google Scholar 

  • Kozma, R., & Russell, J. (1997). Multimedia and understanding: Expert and novice responses to different representations of chemical phenomena. Journal of Research in Science Teaching, 34(9), 949–968.

    Article  Google Scholar 

  • Kozma, R., & Russell, J. (2005). Students becoming chemists: Developing representational competence. In J. K. Gilbert (Ed.), Visualization in science education (pp. 121–145). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Kozma, R., Chin, E., Russell, J., & Marx, N. (2000). The roles of representations and tools in the chemistry laboratory and their implications for chemistry learning. The Journal of the Learning Sciences, 9(2), 105–143.

    Article  Google Scholar 

  • Kundel, H. L., Nodine, C. F., Conant, E. F., & Weinstein, S. P. (2007). Holistic component of image perception in mammogram interpretation: Gaze-tracking study. Radiology, 242, 396–402.

    Article  Google Scholar 

  • Lai, M.-L., Tsai, M.-J., Yang, F.-Y., Hsu, C.-Y., Liu, T.-C., Lee, S. W.-Y., et al. (2013). A review of using eye-tracking technology in exploring learning from 2000 to 2012. Educational Research Review, 10, 90–115.

    Article  Google Scholar 

  • Mahr, B. (2008). Ein Modell des Modellseins: Ein Beitrag zur Aufklärung des Modellbegriffs. In E. Knobloch & U. Dirks (Eds.), Modelle (pp. 187–218). Frankfurt am Main: Peter Lang.

    Google Scholar 

  • Mahr, B. (2009). Die Informatik und die Logik der Modelle. Informatik Spektrum, 32(3), 228–249.

    Article  Google Scholar 

  • van Marlen, T., van Wermeskerken, M., Jarodzka, H., & van Gog, T. (2016). Showing a model's eye movements in examples does not improve learning of problem-solving tasks. Computers in Human Behavior, 65, 448–459.

    Article  Google Scholar 

  • Mason, L., Pluchino, P., & Tornatora, M. C. (2015). Eye-movement modeling of integrative reading of an illustrated text: Effects on processing and learning. Contemporary Educational Psychology, 41, 172–187.

    Article  Google Scholar 

  • McMains, S. A., & Kastner, S. (2009). Visual Attention. In M. D. Binder, N. Hirokawa, & U. Windhorst (Eds.), Encyclopedia of neuroscience (pp. 4296–4302). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  • Nersessian, N. J. (2002). The cognitive basis of model-based reasoning in science. In The cognitive basis of science (pp. 133–153).

    Chapter  Google Scholar 

  • Nitz, S., Ainsworth, S. E., Nerdel, C., & Prechtl, H. (2014). Do student perceptions of teaching predict the development of representational competence and biological knowledge? Learning and Instruction, 31, 13–22.

    Article  Google Scholar 

  • Novick, L. R., & Catley, K. M. (2007). Understanding phylogenies in biology: The influence of a gestalt perceptual principle. Journal of Experimental Psychology: Applied, 13(4), 197–223.

    Google Scholar 

  • Novick, L. R., & Catley, K. M. (2014). When relationships depicted diagrammatically conflict with prior knowledge: An investigation of students’ interpretations of evolutionary trees. Science Education, 98(2), 269–304.

    Article  Google Scholar 

  • Novick, L. R., Stull, A. T., & Catley, K. M. (2012). Reading phylogenetic trees: The effects of tree orientation and text processing on comprehension. Bioscience, 62(8), 757–764.

    Article  Google Scholar 

  • O'Hara, R. J. (1988). Homage to Clio, or, toward an historical philosophy for evolutionary biology. Systematic Zoology, 37(2), 142–155.

    Article  Google Scholar 

  • O'Hara, R. J. (1997). Population thinking and tree thinking in systematics. Zoologica Scripta, 26(4), 323–329.

    Article  Google Scholar 

  • Omland, K. E., Cook, L. G., & Crisp, M. D. (2008). Tree thinking for all biology: The problem with reading phylogenies as ladders of progress. BioEssays, 30(9), 854–867.

    Article  Google Scholar 

  • Passmore, C., Gouvea, J. S., & Giere, R. (2014). Models in science and in learning science: Focusing scientific practice on sense-making. In M. R. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (1st ed., pp. 1171–1202). Dordredht: Springer Netherlands.

    Google Scholar 

  • Rayner, K. (1998). Eye movements in reading and information processing. 20 years of research. Psychological Bulletin, 124(3), 372–422.

    Article  Google Scholar 

  • Rayner, K., Pollatsek, A., Ashby, J., & Clifton, C., Jr. (2012). Psychology of reading. New York: Psychology Press.

    Google Scholar 

  • van Someren, M. W., Barnard, Y. F., & Sandberg, J. A. C. (1994). The think aloud method: A practical guide to modeling cognitive processes. London: Academic Press.

    Google Scholar 

  • Stieff, M. (2007). Mental rotation and diagrammatic reasoning in science. Learning and Instruction, 17(2), 219–234.

    Article  Google Scholar 

  • Stieff, M., Hegarty, M., & Deslongchamps, G. (2011). Identifying representational competence with multi-representational displays. Cognition and Instruction, 29(1), 123–145.

    Article  Google Scholar 

  • Tippett, C. D., & Yore, L. (2011). Exploring middle school students’ representational competence in science: Development and verification of a framework for learning with visual representations.

    Google Scholar 

  • Upmeier zu Belzen, A., & Krüger, D. (2010). Modellkompetenz im Biologieunterricht. ZfDN, 16, 41–57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inga Ubben .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ubben, I., Nitz, S., Daniel, K.L., Upmeier zu Belzen, A. (2018). Assessing Representational Competence with Eye Tracking Technology. In: Daniel, K. (eds) Towards a Framework for Representational Competence in Science Education. Models and Modeling in Science Education, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-89945-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89945-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89943-5

  • Online ISBN: 978-3-319-89945-9

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics