Superconducting Gap in CeCoIn5

  • John S. Van Dyke
Part of the Springer Theses book series (Springer Theses)


One of the central questions that can be asked about any bulk superconductor is the symmetry of its superconducting gap, Δ(k).


  1. 1.
    J.R. Schrieffer, Theory of Superconductivity, revised edn. (Perseus Books, Reading, 1999)Google Scholar
  2. 2.
    D.J. Scalapino, A common thread: the pairing interaction for unconventional superconductors. Rev. Mod. Phys. 84(4), 1383–1417 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    K. Izawa, H. Yamaguchi, Y. Matsuda, H. Shishido, R. Settai, Y. Onuki, Angular position of nodes in the superconducting gap of quasi-2D heavy-fermion superconductor CeCoIn5. Phys. Rev. Lett. 87(5), 057002 (2001)Google Scholar
  4. 4.
    H. Aoki, T. Sakakibara, H. Shishido, R. Settai, Y. Ōnuki, P. Miranović, K. Machida, Field-angle dependence of the zero-energy density of states in the unconventional heavy-fermion superconductor CeCoIn5. J. Phys. Condens. Matter 16(3), L13 (2004)ADSGoogle Scholar
  5. 5.
    M.P. Allan, F. Massee, D.K. Morr, J. Van Dyke, A.W. Rost, A.P. Mackenzie, C. Petrovic, J.C. Davis, Imaging Cooper pairing of heavy fermions in CeCoIn5. Nat. Phys. 9(8), 468–473 (2013)CrossRefGoogle Scholar
  6. 6.
    B.B. Zhou, S. Misra, E.H. da Silva Neto, P. Aynajian, R.E. Baumbach, J.D. Thompson, E.D. Bauer, A. Yazdani, Visualizing nodal heavy fermion superconductivity in CeCoIn5. Nat. Phys. 9(8), 474–479 (2013)CrossRefGoogle Scholar
  7. 7.
    J.A. Stroscio, R.M. Feenstra, A.P. Fein, Electronic Structure of the Si(111)2×1 Surface by Scanning-Tunneling Microscopy. Phys. Rev. Lett. 57(20), 2579–2582 (1986)ADSCrossRefGoogle Scholar
  8. 8.
    M.F. Crommie, C.P. Lutz, D.M. Eigler, Imaging standing waves in a two-dimensional electron gas. Nature 363(6429), 524–527 (1993)ADSCrossRefGoogle Scholar
  9. 9.
    S.H. Pan, J.P. O’Neal, R.L. Badzey, C. Chamon, H. Ding, J.R. Engelbrecht, Z. Wang, H. Eisaki, S. Uchida, A.K. Gupta, K.-W. Ng, E.W. Hudson, K.M. Lang, J.C. Davis, Microscopic electronic inhomogeneity in the high-Tc superconductor Bi2Sr2CaCu2O8+x. Nature 413(6853), 282–285 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    J. Tersoff, D.R. Hamann, Theory and application for the scanning tunneling microscope. Phys. Rev. Lett. 50(25), 1998–2001 (1983)ADSCrossRefGoogle Scholar
  11. 11.
    A.L. de Lozanne, S.A. Elrod, C.F. Quate, Spatial variations in the superconductivity of Nb3Sn measured by low-temperature tunneling microscopy. Phys. Rev. Lett. 54(22), 2433–2436 (1985)ADSCrossRefGoogle Scholar
  12. 12.
    M.H. Hamidian, A.R. Schmidt, I.A. Firmo, M.P. Allan, P. Bradley, J.D. Garrett, T.J. Williams, G.M. Luke, Y. Dubi, A.V. Balatsky, J.C. Davis, How Kondo-holes create intense nanoscale heavy-fermion hybridization disorder. Proc. Natl. Acad. Sci. 108(45), 18233–18237 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Hasegawa, P. Avouris, Direct observation of standing wave formation at surface steps using scanning tunneling spectroscopy. Phys. Rev. Lett. 71(7), 1071–1074 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    L. Petersen, P.T. Sprunger, P. Hofmann, E. Lægsgaard, B.G. Briner, M. Doering, H.-P. Rust, A.M. Bradshaw, F. Besenbacher, E.W. Plummer, Direct imaging of the two-dimensional Fermi contour: Fourier-transform STM. Phys. Rev. B 57(12), R6858–R6861 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    K. Fujita, M. Hamidian, I. Firmo, S. Mukhopadhyay, C.K. Kim, H. Eisaki, S.-i. Uchida, J.C. Davis, Spectroscopic imaging STM: atomic-scale visualization of electronic structure and symmetry in underdoped cuprates, in Strongly Correlated Systems, ed. by A. Avella, F. Mancini. Springer Series in Solid-State Sciences, vol. 180 (Springer, Berlin, 2015), pp. 73–109. Google Scholar
  16. 16.
    G.D. Mahan, Many-Particle Physics, 3rd edn., 2000 edn. (Springer, New York, 2000)CrossRefGoogle Scholar
  17. 17.
    J. Friedel, Metallic alloys. Il Nuovo Cimento 7(2), 287–311 (1958)ADSCrossRefGoogle Scholar
  18. 18.
    K. Andres, J.E. Graebner, H.R. Ott, 4f-virtual-bound-state formation in CeAl3 at low temperatures. Phys. Rev. Lett. 35(26), 1779–1782 (1975)ADSCrossRefGoogle Scholar
  19. 19.
    N. Read, D.M. Newns, On the solution of the Coqblin-Schreiffer Hamiltonian by the large-N expansion technique. J. Phys. C Solid State Phys. 16(17), 3273 (1983)ADSCrossRefGoogle Scholar
  20. 20.
    D.M. Newns, N. Read, Mean-field theory of intermediate valence/heavy fermion systems. Adv. Phys. 36(6), 799–849 (1987)ADSCrossRefGoogle Scholar
  21. 21.
    P. Coleman, New approach to the mixed-valence problem. Phys. Rev. B 29(6), 3035–3044 (1984)ADSCrossRefGoogle Scholar
  22. 22.
    A.J. Millis, P.A. Lee, Large-orbital-degeneracy expansion for the lattice Anderson model. Phys. Rev. B 35(7), 3394–3414 (1987)ADSCrossRefGoogle Scholar
  23. 23.
    M.T. Béal-Monod, C. Bourbonnais, V.J. Emery, Possible superconductivity in nearly antiferromagnetic itinerant fermion systems. Phys. Rev. B 34(11), 7716–7720 (1986)ADSCrossRefGoogle Scholar
  24. 24.
    K. Miyake, S. Schmitt-Rink, C.M. Varma, Spin-fluctuation-mediated even-parity pairing in heavy-fermion superconductors. Phys. Rev. B 34(9), 6554–6556 (1986)ADSCrossRefGoogle Scholar
  25. 25.
    M. Lavagna, A.J. Millis, P.A. Lee, d-wave superconductivity in the large-degeneracy limit of the Anderson lattice. Phys. Rev. Lett. 58(3), 266–269 (1987)ADSCrossRefGoogle Scholar
  26. 26.
    R. Flint, P. Coleman, Tandem pairing in heavy-fermion superconductors. Phys. Rev. Lett. 105(24), 246404 (2010)Google Scholar
  27. 27.
    T. Yuan, J. Figgins, D.K. Morr, Hidden order transition in URu2Si2: evidence for the emergence of a coherent Anderson lattice from scanning tunneling spectroscopy. Phys. Rev. B 86(3), 035129 (2012)Google Scholar
  28. 28.
    A. Akbari, P. Thalmeier, I. Eremin, Quasiparticle interference in the heavy-fermion superconductor CeCoIn5. Phys. Rev. B 84(13), 134505 (2011)Google Scholar
  29. 29.
    J.S. Van Dyke, F. Massee, M.P. Allan, J.C.S. Davis, C. Petrovic, D.K. Morr, Direct evidence for a magnetic f-electron–mediated pairing mechanism of heavy-fermion superconductivity in CeCoIn5. Proc. Natl. Acad. Sci. 111(32), 11663–11667 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    A. Bianchi, R. Movshovich, C. Capan, P.G. Pagliuso, J.L. Sarrao, Possible Fulde-Ferrell-Larkin-Ovchinnikov superconducting state in CeCoIn5. Phys. Rev. Lett. 91(18), 187004 (2003)Google Scholar
  31. 31.
    H. Won, K. Maki, S. Haas, N. Oeschler, F. Weickert, P. Gegenwart, Upper critical field and Fulde-Ferrell-Larkin-Ovchinnikov state in CeCoIn5. Phys. Rev. B 69(18), 180504 (2004)Google Scholar
  32. 32.
    C.F. Miclea, M. Nicklas, D. Parker, K. Maki, J.L. Sarrao, J.D. Thompson, G. Sparn, F. Steglich, Pressure dependence of the Fulde-Ferrell-Larkin-Ovchinnikov state in CeCoIn5. Phys. Rev. Lett. 96(11), 1–4 (2006)CrossRefGoogle Scholar
  33. 33.
    K. Kumagai, M. Saitoh, T. Oyaizu, Y. Furukawa, S. Takashima, M. Nohara, H. Takagi, Y. Matsuda, Fulde-Ferrell-Larkin-Ovchinnikov state in a perpendicular field of quasi-two-dimensional CeCoIn5. Phys. Rev. Lett. 97(22), 227002 (2006)Google Scholar
  34. 34.
    F.P. Toldin, J. Figgins, S. Kirchner, D.K. Morr, Disorder and quasiparticle interference in heavy-fermion materials. Phys. Rev. B 88(8), 081101 (2013)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • John S. Van Dyke
    • 1
  1. 1.Department of Physics and AstronomyIowa State UniversityAmesUSA

Personalised recommendations