Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 407 Accesses

Abstract

One of the central questions that can be asked about any bulk superconductor is the symmetry of its superconducting gap, Δ(k).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.R. Schrieffer, Theory of Superconductivity, revised edn. (Perseus Books, Reading, 1999)

    Google Scholar 

  2. D.J. Scalapino, A common thread: the pairing interaction for unconventional superconductors. Rev. Mod. Phys. 84(4), 1383–1417 (2012)

    Article  ADS  Google Scholar 

  3. K. Izawa, H. Yamaguchi, Y. Matsuda, H. Shishido, R. Settai, Y. Onuki, Angular position of nodes in the superconducting gap of quasi-2D heavy-fermion superconductor CeCoIn5. Phys. Rev. Lett. 87(5), 057002 (2001)

    Google Scholar 

  4. H. Aoki, T. Sakakibara, H. Shishido, R. Settai, Y. Ōnuki, P. Miranović, K. Machida, Field-angle dependence of the zero-energy density of states in the unconventional heavy-fermion superconductor CeCoIn5. J. Phys. Condens. Matter 16(3), L13 (2004)

    ADS  Google Scholar 

  5. M.P. Allan, F. Massee, D.K. Morr, J. Van Dyke, A.W. Rost, A.P. Mackenzie, C. Petrovic, J.C. Davis, Imaging Cooper pairing of heavy fermions in CeCoIn5. Nat. Phys. 9(8), 468–473 (2013)

    Article  Google Scholar 

  6. B.B. Zhou, S. Misra, E.H. da Silva Neto, P. Aynajian, R.E. Baumbach, J.D. Thompson, E.D. Bauer, A. Yazdani, Visualizing nodal heavy fermion superconductivity in CeCoIn5. Nat. Phys. 9(8), 474–479 (2013)

    Article  Google Scholar 

  7. J.A. Stroscio, R.M. Feenstra, A.P. Fein, Electronic Structure of the Si(111)2×1 Surface by Scanning-Tunneling Microscopy. Phys. Rev. Lett. 57(20), 2579–2582 (1986)

    Article  ADS  Google Scholar 

  8. M.F. Crommie, C.P. Lutz, D.M. Eigler, Imaging standing waves in a two-dimensional electron gas. Nature 363(6429), 524–527 (1993)

    Article  ADS  Google Scholar 

  9. S.H. Pan, J.P. O’Neal, R.L. Badzey, C. Chamon, H. Ding, J.R. Engelbrecht, Z. Wang, H. Eisaki, S. Uchida, A.K. Gupta, K.-W. Ng, E.W. Hudson, K.M. Lang, J.C. Davis, Microscopic electronic inhomogeneity in the high-Tc superconductor Bi2Sr2CaCu2O8+x. Nature 413(6853), 282–285 (2001)

    Article  ADS  Google Scholar 

  10. J. Tersoff, D.R. Hamann, Theory and application for the scanning tunneling microscope. Phys. Rev. Lett. 50(25), 1998–2001 (1983)

    Article  ADS  Google Scholar 

  11. A.L. de Lozanne, S.A. Elrod, C.F. Quate, Spatial variations in the superconductivity of Nb3Sn measured by low-temperature tunneling microscopy. Phys. Rev. Lett. 54(22), 2433–2436 (1985)

    Article  ADS  Google Scholar 

  12. M.H. Hamidian, A.R. Schmidt, I.A. Firmo, M.P. Allan, P. Bradley, J.D. Garrett, T.J. Williams, G.M. Luke, Y. Dubi, A.V. Balatsky, J.C. Davis, How Kondo-holes create intense nanoscale heavy-fermion hybridization disorder. Proc. Natl. Acad. Sci. 108(45), 18233–18237 (2011)

    Article  ADS  Google Scholar 

  13. Y. Hasegawa, P. Avouris, Direct observation of standing wave formation at surface steps using scanning tunneling spectroscopy. Phys. Rev. Lett. 71(7), 1071–1074 (1993)

    Article  ADS  Google Scholar 

  14. L. Petersen, P.T. Sprunger, P. Hofmann, E. Lægsgaard, B.G. Briner, M. Doering, H.-P. Rust, A.M. Bradshaw, F. Besenbacher, E.W. Plummer, Direct imaging of the two-dimensional Fermi contour: Fourier-transform STM. Phys. Rev. B 57(12), R6858–R6861 (1998)

    Article  ADS  Google Scholar 

  15. K. Fujita, M. Hamidian, I. Firmo, S. Mukhopadhyay, C.K. Kim, H. Eisaki, S.-i. Uchida, J.C. Davis, Spectroscopic imaging STM: atomic-scale visualization of electronic structure and symmetry in underdoped cuprates, in Strongly Correlated Systems, ed. by A. Avella, F. Mancini. Springer Series in Solid-State Sciences, vol. 180 (Springer, Berlin, 2015), pp. 73–109. https://doi.org/10.1007/978-3-662-44133-6_3

    Google Scholar 

  16. G.D. Mahan, Many-Particle Physics, 3rd edn., 2000 edn. (Springer, New York, 2000)

    Book  Google Scholar 

  17. J. Friedel, Metallic alloys. Il Nuovo Cimento 7(2), 287–311 (1958)

    Article  ADS  Google Scholar 

  18. K. Andres, J.E. Graebner, H.R. Ott, 4f-virtual-bound-state formation in CeAl3 at low temperatures. Phys. Rev. Lett. 35(26), 1779–1782 (1975)

    Article  ADS  Google Scholar 

  19. N. Read, D.M. Newns, On the solution of the Coqblin-Schreiffer Hamiltonian by the large-N expansion technique. J. Phys. C Solid State Phys. 16(17), 3273 (1983)

    Article  ADS  Google Scholar 

  20. D.M. Newns, N. Read, Mean-field theory of intermediate valence/heavy fermion systems. Adv. Phys. 36(6), 799–849 (1987)

    Article  ADS  Google Scholar 

  21. P. Coleman, New approach to the mixed-valence problem. Phys. Rev. B 29(6), 3035–3044 (1984)

    Article  ADS  Google Scholar 

  22. A.J. Millis, P.A. Lee, Large-orbital-degeneracy expansion for the lattice Anderson model. Phys. Rev. B 35(7), 3394–3414 (1987)

    Article  ADS  Google Scholar 

  23. M.T. Béal-Monod, C. Bourbonnais, V.J. Emery, Possible superconductivity in nearly antiferromagnetic itinerant fermion systems. Phys. Rev. B 34(11), 7716–7720 (1986)

    Article  ADS  Google Scholar 

  24. K. Miyake, S. Schmitt-Rink, C.M. Varma, Spin-fluctuation-mediated even-parity pairing in heavy-fermion superconductors. Phys. Rev. B 34(9), 6554–6556 (1986)

    Article  ADS  Google Scholar 

  25. M. Lavagna, A.J. Millis, P.A. Lee, d-wave superconductivity in the large-degeneracy limit of the Anderson lattice. Phys. Rev. Lett. 58(3), 266–269 (1987)

    Article  ADS  Google Scholar 

  26. R. Flint, P. Coleman, Tandem pairing in heavy-fermion superconductors. Phys. Rev. Lett. 105(24), 246404 (2010)

    Google Scholar 

  27. T. Yuan, J. Figgins, D.K. Morr, Hidden order transition in URu2Si2: evidence for the emergence of a coherent Anderson lattice from scanning tunneling spectroscopy. Phys. Rev. B 86(3), 035129 (2012)

    Google Scholar 

  28. A. Akbari, P. Thalmeier, I. Eremin, Quasiparticle interference in the heavy-fermion superconductor CeCoIn5. Phys. Rev. B 84(13), 134505 (2011)

    Google Scholar 

  29. J.S. Van Dyke, F. Massee, M.P. Allan, J.C.S. Davis, C. Petrovic, D.K. Morr, Direct evidence for a magnetic f-electron–mediated pairing mechanism of heavy-fermion superconductivity in CeCoIn5. Proc. Natl. Acad. Sci. 111(32), 11663–11667 (2014)

    Article  ADS  Google Scholar 

  30. A. Bianchi, R. Movshovich, C. Capan, P.G. Pagliuso, J.L. Sarrao, Possible Fulde-Ferrell-Larkin-Ovchinnikov superconducting state in CeCoIn5. Phys. Rev. Lett. 91(18), 187004 (2003)

    Google Scholar 

  31. H. Won, K. Maki, S. Haas, N. Oeschler, F. Weickert, P. Gegenwart, Upper critical field and Fulde-Ferrell-Larkin-Ovchinnikov state in CeCoIn5. Phys. Rev. B 69(18), 180504 (2004)

    Google Scholar 

  32. C.F. Miclea, M. Nicklas, D. Parker, K. Maki, J.L. Sarrao, J.D. Thompson, G. Sparn, F. Steglich, Pressure dependence of the Fulde-Ferrell-Larkin-Ovchinnikov state in CeCoIn5. Phys. Rev. Lett. 96(11), 1–4 (2006)

    Article  Google Scholar 

  33. K. Kumagai, M. Saitoh, T. Oyaizu, Y. Furukawa, S. Takashima, M. Nohara, H. Takagi, Y. Matsuda, Fulde-Ferrell-Larkin-Ovchinnikov state in a perpendicular field of quasi-two-dimensional CeCoIn5. Phys. Rev. Lett. 97(22), 227002 (2006)

    Google Scholar 

  34. F.P. Toldin, J. Figgins, S. Kirchner, D.K. Morr, Disorder and quasiparticle interference in heavy-fermion materials. Phys. Rev. B 88(8), 081101 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Van Dyke, J.S. (2018). Superconducting Gap in CeCoIn5. In: Electronic and Magnetic Excitations in Correlated and Topological Materials. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-89938-1_2

Download citation

Publish with us

Policies and ethics