Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 363 Accesses

Abstract

The field of condensed matter physics is enormous in scope, extending from the earliest developments in crystallography to cutting-edge applications of holographic dualities (inspired by string theory) to high temperature superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.D. Landau, The theory of a Fermi liquid. Sov. Phys. J. Exp. Theor. Phys. 3, 920 (1957)

    MathSciNet  MATH  Google Scholar 

  2. A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics, Revised English edn. (Dover Publications, New York, 1975)

    Google Scholar 

  3. T. Giamarchi, Quantum Physics in One Dimension, 1st edn. (Clarendon Press, New York, 2004)

    MATH  Google Scholar 

  4. P. Fulde, P. Thalmeier, G. Zwicknagl, Strongly correlated electrons, in Solid State Physics, vol. 60 (Elsevier, San Diego, 2006)

    Google Scholar 

  5. A.C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  6. W.J. de Haas, J. de Boer, G.J. van dën Berg, The electrical resistance of gold, copper and lead at low temperatures. Physica 1(7), 1115–1124 (1934)

    Article  ADS  Google Scholar 

  7. D.K.C. MacDonald, W.B. Pearson, I.M. Templeton, Thermo-electricity at low temperatures. IX. The transition metals as solute and solvent. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 266(1325), 161–184 (1962)

    Google Scholar 

  8. J. Kondo, Resistance minimum in dilute magnetic alloys. Prog. Theor. Phys. 32(1), 37–49 (1964)

    Article  ADS  Google Scholar 

  9. P.W. Anderson, G. Yuval, D.R. Hamann, Exact results in the Kondo problem. II. Scaling theory, qualitatively correct solution, and some new results on one-dimensional classical statistical models. Phys. Rev. B 1(11), 4464–4473 (1970)

    Article  ADS  Google Scholar 

  10. P.W. Anderson, A poor man’s derivation of scaling laws for the Kondo problem. J. Phys. C Solid State Phys. 3(12), 2436 (1970)

    Article  ADS  Google Scholar 

  11. K.G. Wilson, The renormalization group: critical phenomena and the Kondo problem. Rev. Mod. Phys. 47(4), 773–840 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  12. P. Nozières, A “fermi-liquid” description of the Kondo problem at low temperatures. J. Low Temp. Phys. 17(1–2), 31–42 (1974)

    Article  ADS  Google Scholar 

  13. I. Affleck, A.W.W. Ludwig, Exact conformal-field-theory results on the multichannel Kondo effect: single-fermion Green’s function, self-energy, and resistivity. Phys. Rev. B 48(10), 7297–7321 (1993)

    Article  ADS  Google Scholar 

  14. P. Coleman, \(\frac {1}{N}\) expansion for the Kondo lattice. Phys. Rev. B 28(9), 5255–5262 (1983)

    Article  ADS  Google Scholar 

  15. N. Read, D.M. Newns, On the solution of the Coqblin-Schreiffer Hamiltonian by the large-N expansion technique. J. Phys. C Solid State Phys. 16(17), 3273 (1983)

    Article  ADS  Google Scholar 

  16. D.M. Newns, N. Read, Mean-field theory of intermediate valence/heavy fermion systems. Adv. Phys. 36(6), 799–849 (1987)

    Article  ADS  Google Scholar 

  17. N. Andrei, Diagonalization of the Kondo Hamiltonian. Phys. Rev. Lett. 45(5), 379–382 (1980)

    Article  ADS  Google Scholar 

  18. P.B. Wiegmann, Exact solution of s-d exchange model at T=0. Sov. Phys. J. Exp. Theor. Phys. Lett. 31(7), 364 (1980)

    Google Scholar 

  19. H. Keiter, J.C. Kimball, Diagrammatic perturbation technique for the Anderson Hamiltonian, and relation to the sd exchange Hamiltonian. Int. J. Magn. 1, 233 (1971)

    Google Scholar 

  20. A. Ramires, P. Coleman, Supersymmetric approach to heavy fermion systems. Phys. Rev. B 93(3), 035120 (2016)

    Google Scholar 

  21. J.R. Schrieffer, P.A. Wolff, Relation between the Anderson and Kondo Hamiltonians. Phys. Rev. 149(2), 491–492 (1966)

    Article  ADS  Google Scholar 

  22. V.A. Sidorov, M. Nicklas, P.G. Pagliuso, J.L. Sarrao, Y. Bang, A.V. Balatsky, J.D. Thompson, Superconductivity and quantum criticality in CeCoIn5. Phys. Rev. Lett. 89(15), 157004 (2002)

    Google Scholar 

  23. S. Sachdev, Quantum Phase Transitions, 2nd edn. (Cambridge University Press, Cambridge, 2011)

    Book  Google Scholar 

  24. C. Petrovic, P.G. Pagliuso, M.F. Hundley, R. Movshovich, J.L. Sarrao, J.D. Thompson, Z. Fisk, P. Monthoux, Heavy-fermion superconductivity in CeCoIn5 at 2.3 K. J. Phys. Condens. Matter 13(17), L337 (2001)

    ADS  Google Scholar 

  25. H. Hegger, C. Petrovic, E.G. Moshopoulou, M.F. Hundley, J.L. Sarrao, Z. Fisk, J.D. Thompson, Pressure-induced superconductivity in quasi-2D CeRhIn5. Phys. Rev. Lett. 84(21), 4986–4989 (2000)

    Article  ADS  Google Scholar 

  26. C. Petrovic, R. Movshovich, M. Jaime, P.G. Pagliuso, M.F. Hundley, J.L. Sarrao, Z. Fisk, J.D. Thompson, A new heavy-fermion superconductor CeIrIn5: a relative of the cuprates? Europhys. Lett. 53(3), 354–359 (2001)

    Article  ADS  Google Scholar 

  27. D.J. Scalapino, A common thread: the pairing interaction for unconventional superconductors. Rev. Mod. Phys. 84(4), 1383–1417 (2012)

    Article  ADS  Google Scholar 

  28. M.P. Allan, F. Massee, D.K. Morr, J. Van Dyke, A.W. Rost, A.P. Mackenzie, C. Petrovic, J.C. Davis, Imaging Cooper pairing of heavy fermions in CeCoIn5. Nat. Phys. 9(8), 468–473 (2013)

    Article  Google Scholar 

  29. J.S. Van Dyke, F. Massee, M.P. Allan, J.C.S. Davis, C. Petrovic, D.K. Morr, Direct evidence for a magnetic f-electron-mediated pairing mechanism of heavy-fermion superconductivity in CeCoIn5. Proc. Natl. Acad. Sci. 111(32), 11663–11667 (2014)

    Article  ADS  Google Scholar 

  30. M.Z. Hasan, C.L. Kane, Colloquium: topological insulators. Rev. Mod. Phys. 82(4), 3045–3067 (2010)

    Article  ADS  Google Scholar 

  31. X.-L. Qi, S.-C. Zhang, Topological insulators and superconductors. Rev. Mod. Phys. 83(4), 1057–1110 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Van Dyke, J.S. (2018). Introduction. In: Electronic and Magnetic Excitations in Correlated and Topological Materials. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-89938-1_1

Download citation

Publish with us

Policies and ethics