• John S. Van Dyke
Part of the Springer Theses book series (Springer Theses)


The field of condensed matter physics is enormous in scope, extending from the earliest developments in crystallography to cutting-edge applications of holographic dualities (inspired by string theory) to high temperature superconductors.


  1. 1.
    L.D. Landau, The theory of a Fermi liquid. Sov. Phys. J. Exp. Theor. Phys. 3, 920 (1957)MathSciNetzbMATHGoogle Scholar
  2. 2.
    A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics, Revised English edn. (Dover Publications, New York, 1975)Google Scholar
  3. 3.
    T. Giamarchi, Quantum Physics in One Dimension, 1st edn. (Clarendon Press, New York, 2004)zbMATHGoogle Scholar
  4. 4.
    P. Fulde, P. Thalmeier, G. Zwicknagl, Strongly correlated electrons, in Solid State Physics, vol. 60 (Elsevier, San Diego, 2006)Google Scholar
  5. 5.
    A.C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1997)Google Scholar
  6. 6.
    W.J. de Haas, J. de Boer, G.J. van dën Berg, The electrical resistance of gold, copper and lead at low temperatures. Physica 1(7), 1115–1124 (1934)ADSCrossRefGoogle Scholar
  7. 7.
    D.K.C. MacDonald, W.B. Pearson, I.M. Templeton, Thermo-electricity at low temperatures. IX. The transition metals as solute and solvent. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 266(1325), 161–184 (1962)Google Scholar
  8. 8.
    J. Kondo, Resistance minimum in dilute magnetic alloys. Prog. Theor. Phys. 32(1), 37–49 (1964)ADSCrossRefGoogle Scholar
  9. 9.
    P.W. Anderson, G. Yuval, D.R. Hamann, Exact results in the Kondo problem. II. Scaling theory, qualitatively correct solution, and some new results on one-dimensional classical statistical models. Phys. Rev. B 1(11), 4464–4473 (1970)ADSCrossRefGoogle Scholar
  10. 10.
    P.W. Anderson, A poor man’s derivation of scaling laws for the Kondo problem. J. Phys. C Solid State Phys. 3(12), 2436 (1970)ADSCrossRefGoogle Scholar
  11. 11.
    K.G. Wilson, The renormalization group: critical phenomena and the Kondo problem. Rev. Mod. Phys. 47(4), 773–840 (1975)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    P. Nozières, A “fermi-liquid” description of the Kondo problem at low temperatures. J. Low Temp. Phys. 17(1–2), 31–42 (1974)ADSCrossRefGoogle Scholar
  13. 13.
    I. Affleck, A.W.W. Ludwig, Exact conformal-field-theory results on the multichannel Kondo effect: single-fermion Green’s function, self-energy, and resistivity. Phys. Rev. B 48(10), 7297–7321 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    P. Coleman, \(\frac {1}{N}\) expansion for the Kondo lattice. Phys. Rev. B 28(9), 5255–5262 (1983)ADSCrossRefGoogle Scholar
  15. 15.
    N. Read, D.M. Newns, On the solution of the Coqblin-Schreiffer Hamiltonian by the large-N expansion technique. J. Phys. C Solid State Phys. 16(17), 3273 (1983)ADSCrossRefGoogle Scholar
  16. 16.
    D.M. Newns, N. Read, Mean-field theory of intermediate valence/heavy fermion systems. Adv. Phys. 36(6), 799–849 (1987)ADSCrossRefGoogle Scholar
  17. 17.
    N. Andrei, Diagonalization of the Kondo Hamiltonian. Phys. Rev. Lett. 45(5), 379–382 (1980)ADSCrossRefGoogle Scholar
  18. 18.
    P.B. Wiegmann, Exact solution of s-d exchange model at T=0. Sov. Phys. J. Exp. Theor. Phys. Lett. 31(7), 364 (1980)Google Scholar
  19. 19.
    H. Keiter, J.C. Kimball, Diagrammatic perturbation technique for the Anderson Hamiltonian, and relation to the sd exchange Hamiltonian. Int. J. Magn. 1, 233 (1971)Google Scholar
  20. 20.
    A. Ramires, P. Coleman, Supersymmetric approach to heavy fermion systems. Phys. Rev. B 93(3), 035120 (2016)Google Scholar
  21. 21.
    J.R. Schrieffer, P.A. Wolff, Relation between the Anderson and Kondo Hamiltonians. Phys. Rev. 149(2), 491–492 (1966)ADSCrossRefGoogle Scholar
  22. 22.
    V.A. Sidorov, M. Nicklas, P.G. Pagliuso, J.L. Sarrao, Y. Bang, A.V. Balatsky, J.D. Thompson, Superconductivity and quantum criticality in CeCoIn5. Phys. Rev. Lett. 89(15), 157004 (2002)Google Scholar
  23. 23.
    S. Sachdev, Quantum Phase Transitions, 2nd edn. (Cambridge University Press, Cambridge, 2011)CrossRefGoogle Scholar
  24. 24.
    C. Petrovic, P.G. Pagliuso, M.F. Hundley, R. Movshovich, J.L. Sarrao, J.D. Thompson, Z. Fisk, P. Monthoux, Heavy-fermion superconductivity in CeCoIn5 at 2.3 K. J. Phys. Condens. Matter 13(17), L337 (2001)ADSGoogle Scholar
  25. 25.
    H. Hegger, C. Petrovic, E.G. Moshopoulou, M.F. Hundley, J.L. Sarrao, Z. Fisk, J.D. Thompson, Pressure-induced superconductivity in quasi-2D CeRhIn5. Phys. Rev. Lett. 84(21), 4986–4989 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    C. Petrovic, R. Movshovich, M. Jaime, P.G. Pagliuso, M.F. Hundley, J.L. Sarrao, Z. Fisk, J.D. Thompson, A new heavy-fermion superconductor CeIrIn5: a relative of the cuprates? Europhys. Lett. 53(3), 354–359 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    D.J. Scalapino, A common thread: the pairing interaction for unconventional superconductors. Rev. Mod. Phys. 84(4), 1383–1417 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    M.P. Allan, F. Massee, D.K. Morr, J. Van Dyke, A.W. Rost, A.P. Mackenzie, C. Petrovic, J.C. Davis, Imaging Cooper pairing of heavy fermions in CeCoIn5. Nat. Phys. 9(8), 468–473 (2013)CrossRefGoogle Scholar
  29. 29.
    J.S. Van Dyke, F. Massee, M.P. Allan, J.C.S. Davis, C. Petrovic, D.K. Morr, Direct evidence for a magnetic f-electron-mediated pairing mechanism of heavy-fermion superconductivity in CeCoIn5. Proc. Natl. Acad. Sci. 111(32), 11663–11667 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    M.Z. Hasan, C.L. Kane, Colloquium: topological insulators. Rev. Mod. Phys. 82(4), 3045–3067 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    X.-L. Qi, S.-C. Zhang, Topological insulators and superconductors. Rev. Mod. Phys. 83(4), 1057–1110 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • John S. Van Dyke
    • 1
  1. 1.Department of Physics and AstronomyIowa State UniversityAmesUSA

Personalised recommendations