Skip to main content

δ-Hyperbolicity and the Core-Periphery Structure in Graphs

  • Chapter
  • First Online:
Machine Learning Techniques for Online Social Networks

Part of the book series: Lecture Notes in Social Networks ((LNSN))

Abstract

δ-Hyperbolicity is a graph parameter that shows how close to a tree a graph is metrically. In this work, we propose a method that reduces the size of the graph to only a subset that is responsible for maximizing its δ-hyperbolicity using the local dominance relationship between vertices. Furthermore, we empirically show that the hyperbolicity of a graph can be found in a set of vertices that are in close proximity and that concentrate in the core of the graph. We adopt two core definitions each of which represents a different notion of vertex coreness. The minimum-cover-set core, which is a transport-based core, and the k-core, which is a density-based core. Our observations have crucial implications on computing the δ-hyperbolicity of large graphs. (Parts of this work were published in Alrasheed (On the δ-hyperbolicity of complex networks. In: Proceedings of the IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM), 2016).)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    All experiments in this work were performed on a personal computer with an Intel(R) 2.50 GHz CPU and 16 GB Ram without the use of multiprocessors.

References

  1. Abu-Ata, M., Dragan, F.F.: Metric tree-like structures in real-world networks: an empirical study. Networks 67(1), 49–68 (2016)

    Article  Google Scholar 

  2. Adcock, A., Sullivan, B., Hernandez, O., Mahoney, M.: Evaluating OpenMP tasking at scale for the computation of graph hyperbolicity. In: International Workshop on OpenMP. Springer, Berlin (2013)

    Chapter  Google Scholar 

  3. Adcock, A., Sullivan, B., Mahoney, M.: Tree-like structure in large social and information networks. In: Proceedings of the 13th IEEE International conference on Data Mining (ICDM), pp. 1–10 (2013)

    Google Scholar 

  4. Aiello, W., Chung, F., Lu, L.: A random graph model for massive graphs. In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, pp. 171–180. ACM, New York (2000)

    Google Scholar 

  5. Albert, R., DasGupta, B., Mobasheri, N.: Topological implications of negative curvature for biological and social networks. Phys. Rev. E 89(3), 032811 (2014)

    Google Scholar 

  6. Alrasheed, H.: On the δ-hyperbolicity of complex networks. In: Proceedings of the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (2016)

    Google Scholar 

  7. Alrasheed, H., Dragan, F.F.: Core-periphery models for graphs based on their δ-hyperbolicity. In: Complex Networks VI, pp. 65–77 (2015)

    Google Scholar 

  8. Batagelj, V., Mrvar, A.: Pajek datasets. http://vlado.fmf.uni-lj.si/pub/networks/data/ (2006)

  9. Batagelj, V., Zaversnik, V.: An O(m) algorithm for cores decomposition of networks (2003). Preprint. arXivcs/0310049

    Google Scholar 

  10. Brady, A.: A compact routing scheme for power-law networks using empirical discoveries in power-law graph topology. Doctoral dissertation, Tufts University, Citeseer (2005)

    Google Scholar 

  11. Center for applied Internet data analysis. http://www.caida.org/data/as-relationships

  12. Chepoi, V.: On distance-preserving and domination elimination orderings. SIAM J. Discret. Math. 11(3), 414–436 (1998)

    Article  Google Scholar 

  13. Chepoi, V., Dragan, F.F., Estellon, B., Habib, M., Vaxès, Y.: Diameters, centers, and approximating trees of delta-hyperbolicgeodesic spaces and graphs. In: Proceedings of the Twenty-Fourth Annual Symposium on Computational Geometry, pp. 59–68. ACM, New York (2008)

    Google Scholar 

  14. Cohen, N., Coudert, D., Lancin, A.: Exact and approximate algorithms for computing the hyperbolicity of large-scale graphs. Research Report RR-8074 (2012)

    Google Scholar 

  15. Fang, W.: On hyperbolic geometry structure of complex networks. Report of M1 internship in Microsoft Research Asia (2011)

    Google Scholar 

  16. Fournier, H., Ismail, A., Vigneron, A.: Computing the Gromov hyperbolicity of a discrete metric space. Inf. Process. Lett. 115(6), 576–579 (2015)

    Article  Google Scholar 

  17. Gamble, J., Chintakunta, H., Krim, H.: Emergence of core-periphery structure from local node dominance in social networks. In: 2015 23rd European Signal Processing Conference (EUSIPCO), pp. 1910–1914. IEEE, New York (2015)

    Google Scholar 

  18. Gromov, M.: Hyperbolic groups. In: Essays in Group Theory, pp. 75–263. Springer, New York (1987)

    Chapter  Google Scholar 

  19. Holme, P.: Core-periphery organization of complex networks. Phys. Rev. E 72(4), 046111 (2005)

    Article  Google Scholar 

  20. Kennedy, W.S., Narayan, O., Saniee, I.: On the hyperbolicity of large-scale networks (2013). Preprint. arXiv:1307.0031

    Google Scholar 

  21. Lee, S., Cucuringu, M., Porter, M.: Density-based and transport-based core-periphery structures in networks. Phys. Rev. E 89(3), 032810 (2014)

    Article  Google Scholar 

  22. Lu, L.: The diameter of random massive graphs. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 912–921 (2001)

    Google Scholar 

  23. Montgolfier, F., Soto, M., Viennot, L.: Treewidth and hyperbolicity of the internet. In: Proceedings of the 10th IEEE International Symposium on Network Computing and Applications (NCA), pp. 25–32 (2011)

    Google Scholar 

  24. Narayan, O., Saniee, I.: The large scale curvature of networks. Phys. Rev. E 84(6), 066108 (2011)

    Article  Google Scholar 

  25. Rodríguez, J., Sigarreta, J., Vilaire, J., Villeta, M.: On the hyperbolicity constant in graphs. Discret. Math. 311(4), 211–219 (2011)

    Article  Google Scholar 

  26. Seidman, S.: Network structure and minimum degree. Soc. Networks 5(3), 269–287 (1983)

    Article  Google Scholar 

  27. Stark, C., Breitkreutz, B., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34(suppl 1), D535–D539 (2006)

    Article  Google Scholar 

  28. http://www-personal.umich.edu/~mejn/netdata/

  29. http://deim.urv.cat/$sim$alexandre.arenas/data/welcome.htm

  30. http://digg.cs.tufts.edu/samples/

  31. http://web.archive.org/web/20060506132945/ http://www.cosin.org.

  32. https://snap.stanford.edu/data/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hend Alrasheed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alrasheed, H. (2018). δ-Hyperbolicity and the Core-Periphery Structure in Graphs. In: Özyer, T., Alhajj, R. (eds) Machine Learning Techniques for Online Social Networks. Lecture Notes in Social Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-89932-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89932-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89931-2

  • Online ISBN: 978-3-319-89932-9

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics