Advertisement

Aerial and Satellite Imagery and Big Data: Blending Old Technologies with New Trends

Chapter

Abstract

Over the past decades, the successful employment of aerial and satellite imagery and remote sensing (RS) data has been very diverse and important in many scientific fields. Firstly, a brief review of RS history is presented in section one. Then, basic properties, which are also challenges, of RS big data are concisely discussed. Volume, variety and velocity are mainly described as characteristics of RS big data while variety, value and visualization are primarily denoted as new challenges. The third section is concentrated on justifying the relevance of RS big data in today’s society and the needs to integrate it with other kind of data sources to develop useful services. In this sense, a special section is dedicated to Copernicus initiative and some case studies of specific applications are also shown. Finally, some general conclusions are presented paying attention to the spatial nature of RS big data, which gives it a special added value in the new digital era.

Keywords

Aerial and satellite imagery Remote sensing Spatial big data Integration 

References

  1. 1.
    Davenport A (2000) The history of photography: an overview, 2nd edn. The University of New Mexico Press, AlbuquerqueGoogle Scholar
  2. 2.
    Barber M, Wickstead H (2010) One immense black spot’: aerial views of London 1784–1918. Lond J 35:236–254CrossRefGoogle Scholar
  3. 3.
    Campbell JB, Wynne RH (2011) Introduction to remote sensing, 5th edn. The Guilford Press, New YorkGoogle Scholar
  4. 4.
    Butler MJA, Mouchot MC, Barale V, LeBlanc C (1988) The application of remote sensing technology to marine fisheries: an introductory manual. Food and Agriculture Organization of United Nations, RomeGoogle Scholar
  5. 5.
    Gosh S (1981) History of Photogrammetry. Laval University, QuébecGoogle Scholar
  6. 6.
    Schenk T (2005) Introduction to photogrammetry, 1st edn. The Ohio State University, ColumbusGoogle Scholar
  7. 7.
    Stichelbaut B (2006) The application of First World War aerial photography to archaeology: the Belgian images. Antiquity 80:161–172CrossRefGoogle Scholar
  8. 8.
    The Professional Aerial Photographers Association (2017) History of aerial photographyGoogle Scholar
  9. 9.
    Monmonier M (2002) Aerial photography at the agricultural adjustment administration: acreage controls, conservation benefits, and overhead surveillance in the 1930s. Photogramm Eng Remote Sens 68:1257–1262Google Scholar
  10. 10.
    Rango A, Havstad K, Estell R (2011) The utilization of historical data and geospatial technology advances at the Jornada experimental range to support Western America ranching culture. Remote Sens 3:2089–2109CrossRefGoogle Scholar
  11. 11.
    Cracknell A, Haynes L (1991) Introduction to remote sensing, 2nd edn. Taylor & Francis Ltd., LondonGoogle Scholar
  12. 12.
    Ruffner K (2017) Corona: America’s first satellite program. Central Intelligence Agency, Washington, DCGoogle Scholar
  13. 13.
    NASA Science Website (2016) TIROS: The television infrared observation satellite program. In: NASA Science WebsiteGoogle Scholar
  14. 14.
    Graham S (1999) Remote sensing: introduction and history. In: NASA Earth Observatory. https://earthobservatory.nasa.gov/Features/RemoteSensing/
  15. 15.
    Mack P (1990) Viewing the earth: The social construction of the landsat satellite sytem. The MIT Press, LondonGoogle Scholar
  16. 16.
    NASA Landsat Science (2017) History: from the beginning. In: NASA Landsat ScienceGoogle Scholar
  17. 17.
    Van Wie P, Stein M (1976) A landsat digital image rectification system. GreenbeltGoogle Scholar
  18. 18.
    Patra P (2010) Remote sensing and geographical information system (gis). Assoc Geogr StudGoogle Scholar
  19. 19.
    Antenucci JC, Brown K, Croswell PL, Kevany MJ, Archer H (1991) Geographic information systems. A guide to the technology. New YorkGoogle Scholar
  20. 20.
    Foresman T (2010) GIS, History of geographic information systems. Encycl Geogr 1281–1284Google Scholar
  21. 21.
    NASA Jet Propulsion Laboratory (2010) AVIRIS—airborne visible/infrared imaging spectrometer—general overview. https://aviris.jpl.nasa.gov/aviris/
  22. 22.
    NASA Terra—The EOS Flagship (2017) Terra Instruments|Terra. https://terra.nasa.gov/about/terra-instruments
  23. 23.
    Mohamed B, Werner K (2007) Geospatial information bottom-up: a matter of trust and semantics. In: Fabrikant SI, Wachowicz M (eds) The European information society. Springer, pp 365–387Google Scholar
  24. 24.
    Farman J (2010) Mapping the digital empire: Google earth and the process of postmodern cartography. New Media Soc 12:869–888CrossRefGoogle Scholar
  25. 25.
    Ma Y, Wu H, Wang L, Huang B, Ranjan R, Zomaya A, Jie W (2015) Remote sensing big data computing: challenges and opportunities. Futur Gener Comput Syst 51:47–60.  https://doi.org/10.1016/j.future.2014.10.029CrossRefGoogle Scholar
  26. 26.
    Zikopoulos P, Eaton C (2011) Understanding big data: analytics for enterprise class Hadoop and streaming data, 1st edn. McGraw-Hill Osborne Media (IBM)Google Scholar
  27. 27.
    NASA (2010) On-orbit satellite servicing studyGoogle Scholar
  28. 28.
    Kambatla K, Kollias G, Kumar V, Grama A (2014) Trends in big data analytics. J Parallel Distrib Comput 74:2561–2573CrossRefGoogle Scholar
  29. 29.
    NASA Earth Data (2017) Getting petabytes to people: how the EOSDIS facilitates earth observing data discovery and use. https://earthdata.nasa.gov/getting-petabytes-to-people-how-the-eosdis-facilitates-earth-observing-data-discovery-and-use
  30. 30.
    ITC (2017) ITC-ITC’s database of satellites and sensors—all sensors. https://www.itc.nl/Pub/sensordb/AllSensors.aspx
  31. 31.
    Villars RL, Olofson CW, Eastwood M (2011) Big data: what it is and why you should care. White Pap.  https://doi.org/10.1080/01616846.2017.1313045CrossRefGoogle Scholar
  32. 32.
    Justice CO, Vermote E, Townshend JRG, Defries R, Roy DP, Hall DK, Salomonson VV, Privette JL, Riggs G, Strahler A, Lucht W, Myneni RB, Knyazikhin Y, Running SW, Nemani RR, Zhengming Wan Z, Huete A, van Leeuwen W, Wolfe RE, Giglio L, Muller J, Lewis P, Barnsley MJ (1998) The moderate resolution imaging spectroradiometer (MODIS): land remote sensing for global change research. IEEE Trans Geosci Remote Sens 36:1228–1249.  https://doi.org/10.1109/36.701075CrossRefGoogle Scholar
  33. 33.
    Datameer (2017) Getting more value from your data lake. https://www.datameer.com/. Accessed 12 Sep 2017
  34. 34.
    Heger D, Ogunleye J (2015) Big data, the cloud and challenges of operationalising big data analytics. Curr Stud Comp Educ Sci Technol 2:427–435Google Scholar
  35. 35.
    Mazhar M, Rathore U, Paul A, Ahmad A, Chen B-W, Huang B, Ji W (2015) Real-time big data analytical architecture for remote sensing application. IEEE J Sel Top Appl Earth Obs, Remote Sens, p 8Google Scholar
  36. 36.
    Datameer (2017) Best practice for a successful Big Data jouneyGoogle Scholar
  37. 37.
    Freitas RM (2011) Virtual laboratory of remote sensing time series: visualization of MODIS EVI2 data set over South America. J Comput Interdiscip Sci 2:57–68.  https://doi.org/10.6062/jcis.2011.02.01.0032CrossRefGoogle Scholar
  38. 38.
    Vatsavay R, Chandola V (2016) Guest editorial: big spatial data. Geoinformatica.  https://doi.org/10.1007/s10707-016-0269-7CrossRefGoogle Scholar
  39. 39.
    Zicari RV, Rosselli M, Ivanov T, Korfiatis N, Tolle K, Niemann R, Reichenbach C (2016) Setting up a big data project: challenges, opportunities, technologies and optimization. In: Big data optimization: recent developments and challenges. Studies in big data.  https://doi.org/10.1007/978-3-319-30265-2_2Google Scholar
  40. 40.
    González SM, Berbel T dos RL (2014) Considering unstructure data for OLAP: a feasability study using a systematic review. Rev Sist Informação da FSMA 14:26–35Google Scholar
  41. 41.
    Chen M, Mao S, Liu Y (2014) Big data: a survey. Mob Netw Appl 19:171–209.  https://doi.org/10.1007/s11036-013-0489-0CrossRefGoogle Scholar
  42. 42.
    Khan N, Yaqoob I, Abaker I, Hashem T (2014) Big data: survey, technologies, opportunities, and challenges. Sci World J 18Google Scholar
  43. 43.
    Lang S (2008) Object-based image analysis for remote sensing applications: modeling reality—dealing with complexity. In: Blaschke T, Lang S, Hay GJ (eds) Object based image anal. Springer, pp 3–27Google Scholar
  44. 44.
    Hay GJ, Castilla G (2006) Object-based image analysis: strengths, weaknesses, opportunities and threats (SWOT). OBIA, Int Arch Photogramm Remote Sens Spat Inf Sci 3Google Scholar
  45. 45.
    Blaschke T (2010) Object based image analysis for remote sensing. ISPRS J Photogramm Remote Sens 65:2–16CrossRefGoogle Scholar
  46. 46.
    Audubon, Cornell Lab of Orithnology (2017) About eBird|eBird. http://ebird.org/content/ebird/about/
  47. 47.
    Wood C, Sullivan B, Iliff M, Fink D, Kelling S (2011) eBird: engaging birders in science and conservation. PLoS Biol 9Google Scholar
  48. 48.
    Fink D, Hochachka WM, Zuckerberg B, Winkler DW, Shaby B, Munson MA, Hooker G, Riedewald M, Sheldon D, Kelling S (2010) Spatiotemporal exploratory models for broad-scale survey data. Ecol Appl 20:2131–2147.  https://doi.org/10.1890/09-1340.1CrossRefGoogle Scholar
  49. 49.
    Beddington JR, Agnew DJ, Clark CW (2007) Current problems in the management of marine fisheries. Science 80(316):1713–1716CrossRefGoogle Scholar
  50. 50.
    Gorospe KD, Michaels W, Pomeroy R, Elvidge C, Lynch P, Wongbusarakum S, Brainard RE (2016) The mobilization of science and technology fisheries innovations towards an ecosystem approach to fisheries management in the Coral Triangle and Southeast Asia. Mar Policy 74:143–152.  https://doi.org/10.1016/j.marpol.2016.09.014CrossRefGoogle Scholar
  51. 51.
    Yamaguchi T, Asanuma I, Park JG, Mackin KJ, Mittleman J (2016) Estimation of vessel traffic density from Suomi NPP VIIRS day/night band. Ocean 2016 MTS/IEEE Monterey. OCE 2016:5–9.  https://doi.org/10.1109/OCEANS.2016.7761309CrossRefGoogle Scholar
  52. 52.
    Straka WC, Seaman CJ, Baugh K, Cole K, Stevens E, Miller SD (2015) Utilization of the suomi national polar-orbiting partnership (npp) visible infrared imaging radiometer suite (viirs) day/night band for arctic ship tracking and fisheries management. Remote Sens 7:971–989.  https://doi.org/10.3390/rs70100971CrossRefGoogle Scholar
  53. 53.
    Addo KA (2010) Urban and peri-urban agriculture in developing countries studied using remote sensing and in situ methods. Remote Sens 2:497–513.  https://doi.org/10.3390/rs2020497CrossRefGoogle Scholar
  54. 54.
    Stefanov WL (2001) Monitoring urban land cover change: An expert system approach to land cover classification of semiarid to urban centers. Remote Sens Environ 77:173–185.  https://doi.org/10.1016/S0034-4257(01)00204-8CrossRefGoogle Scholar
  55. 55.
    Yuliang Q, Buzhou M, Jiuliang F (2000) Study on monitoring farmland by using remote sensing and GIS in Shanxi China. Adv Space Res 26:1059–1064.  https://doi.org/10.1016/S0273-1177(99)01118-7CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Natural and Environmental Sciences DepartmentInternational University SEK, UISEKQuitoEcuador
  2. 2.GeoBioMet Research Group, Geography and Planning DepartmentUniversity of Cantabria, ETSISantanderSpain

Personalised recommendations