Skip to main content

On Control Design for a Lower Limb Orthosis: A Comparative Study in Different Operating Conditions

  • Conference paper
  • First Online:
Mechanism, Machine, Robotics and Mechatronics Sciences

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 58))

Abstract

This paper deals with the control of a lower limb orthosis. In which a model of the shank-orthosis system is given, we consider the human effort as external torque acting on the system. A comparative study, through a number of simulations in different operational scenarios, highlights the limits of a standard PID controller. On another hand, this work brings out the benefits of orienting the control strategies toward model reference approaches. Hence, a better exploitation of the nonlinear system dynamics; by deriving adaptive control strategies to enable the management of parameters uncertainty could be a relevant approach for such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jansen CM, Windau JE, Bonutti PM, Brillhart MV (1996) Treatment of a knee contracture using a knee orthosis incorporating stress-relaxation techniques. Phys Ther 76(2):182–186

    Article  Google Scholar 

  2. Rudhe C, Albisser U, Starkey ML, Curt A, Bolliger M (2012) Reliability of movement workspace measurements in a passive arm orthosis used in spinal cord injury rehabilitation. J Neuroeng Rehabil 9(1):37

    Article  Google Scholar 

  3. Marchal-Crespo L, Reinkensmeyer DJ (2009) Review of control strategies for robotic movement training after neurologic injury. J Neuroeng Rehabil 6(1):20

    Article  Google Scholar 

  4. Buchanan TS, Lloyd DG, Manal K, Besier TF (2004) Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command. J Appl Biomech 20(4):367–395

    Article  Google Scholar 

  5. Fleischer C, Hommel G (2008) A human-exoskeleton interface utilizing electromyography. IEEE Trans Rob 24(4):872–882

    Article  Google Scholar 

  6. Ferris DP, Lewis CL (2009) Robotic lower limb exoskeletons using proportional myoelectric control. In: EMBC 2009 annual international conference of the IEEE engineering in medicine and biology society. IEEE, pp 2119–2124

    Google Scholar 

  7. Ang KH, Chong G, Li Y (2005) Pid control system analysis, design, and technology. IEEE Trans Control Syst Technol 13(4):559–576

    Article  Google Scholar 

  8. Rifai H, Mohammed S, Daachi B, Amirat Y (2012) Adaptive control of a human-driven knee joint orthosis. In: 2012 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp 2486–2491

    Google Scholar 

  9. Blaya JA, Herr H (2004) Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Trans Neural Syst Rehabil Eng 12(1):24–31

    Article  Google Scholar 

  10. Noble JW, Prentice SD (2006) Adaptation to unilateral change in lower limb mechanical properties during human walking. Exp Brain Res 169(4):482–495

    Article  Google Scholar 

  11. Kao P-C, Ferris DP (2009) Motor adaptation during dorsiflexion-assisted walking with a powered orthosis. Gait Posture 29(2):230–236

    Article  Google Scholar 

  12. Rifaï H, Abdessalem MB, Chemori A, Mohammed S, Amirat Y (2016) Augmented-1 adaptive control of an actuated knee joint exoskeleton: from design to real-time experiments. In: 2016 IEEE international conference on robotics and automation (ICRA). IEEE, pp 5708–5714

    Google Scholar 

  13. Rifaï H, Mohammed S, Hassani W, Amirat Y (2013) Nested saturation based control of an actuated knee joint orthosis. Mechatronics 23(8):1141–1149

    Article  Google Scholar 

  14. Kelly R, Davila VS, Perez JAL (2006) Control of robot manipulators in joint space. Springer Science & Business Media

    Google Scholar 

  15. Slotine J-JE, Li W (1987) On the adaptive control of robot manipulators. Int J Robot Res 6(3):49–59

    Article  Google Scholar 

  16. Boualbani M, Bousri A (2016) Commande avancée d’un exosquelette. Master’s thesis, Université de Montpellier 2, France, Montpellier

    Google Scholar 

  17. Thelen DG et al (2003) Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults. Trans Am Soc Mech Eng J Biomech Eng 125(1):70–77

    Google Scholar 

  18. Hill A (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond B Biol Sci 126(843):136–195

    Article  Google Scholar 

  19. Zajac FE (1989) Muscle and tendon properties models scaling and application to biomechanics and motor. Crit Rev Biomed Eng 17(4):359–411

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Roula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roula, N., Chemori, A., Rizk, R., Zaatar, Y. (2019). On Control Design for a Lower Limb Orthosis: A Comparative Study in Different Operating Conditions. In: Rizk, R., Awad, M. (eds) Mechanism, Machine, Robotics and Mechatronics Sciences. Mechanisms and Machine Science, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-319-89911-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89911-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89910-7

  • Online ISBN: 978-3-319-89911-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics