Skip to main content

On the Validation of the Proper Generalized Decomposition Method with Finite Element Method: 3D Heat Problem Under Cyclic Loading

  • Conference paper
  • First Online:
Mechanism, Machine, Robotics and Mechatronics Sciences

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 58))

Abstract

Polymers are widely used in machine design, biomedical engineering, aircraft, and mechatronics. Certainly, these products are subjected to thermo-mechanical loading. For this reason, dealing with the fatigue criteria for viscous polymers is essential. In fact, this requires a large number of cycles to reach the accommodated cycle. These materials have a thermoviscoelastic behavior that has already been studied within the Finite Element Method (FEM). However, a very large computation time or a non-convergence has been noticed. In this paper, we considered a 3D thermal problem under cyclic load in which three main parts are considered. Firstly, the problem is studied using the Proper Generalized Decomposition method (PGD) where it shows a gain in the computation time compared to the classical FEM with a relative error less than 5%. Secondly, different time scales are taken into consideration: the cyclic time (load) and the characteristic one (material properties), where different relaxation times lead to various responses of the polymer. A link between these times should be established. Finally, the effect of the spatial point position on the evolution of the temperature within the domain is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nguyen STT (2013) Experimental characterization and thermo-mechanical modeling of cyclic behavior of polyethylene, PhD dissertation, ISAE-ENSMA Ecole Nationale Supérieure de Mécanique et d’Aérotechique—Poitiers

    Google Scholar 

  2. Bellman RE (2003) Dynamic programming. Courier Dover Publications, New York, republished edition

    Google Scholar 

  3. Berrehili A, Nadot Y, Castagnet S, Grandidier J, Dumas C (2010) Multiaxial fatigue criterion for polypropylene automotive applications. Int J Fatigue 32(8):1389–1392

    Article  Google Scholar 

  4. Dao KC, Dicken DJ (1987) Fatigue failure mechanisms in polymers. Polymer Eng Sci 27(4):271–276

    Article  Google Scholar 

  5. Aguado JV (2015) Advanced strategies for the separated formulation of problems in the Proper Generalized Decomposition framework. PhD thesis, Ecole Centrale de Nantes

    Google Scholar 

  6. Benner P (2015) A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev 57(4):483–531

    Article  MathSciNet  Google Scholar 

  7. Chinesta FF, Huerta A, Rozza G, Willcox K (2014) Encyclopedia of computational mechanics

    Google Scholar 

  8. Liang Y, Lee H, Lim S, Lin W, Lee K, WU C (2002) Proper orthogonal decomposition and its applications part i: Theory. J Sound Vib. 252(3):527–544

    Article  MathSciNet  Google Scholar 

  9. Kerschen G, Golinval J-C, Vakakis AF, Bergman LA (2005) The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: An overview. Nonlinear Dyn 41(1):147–169

    Article  MathSciNet  Google Scholar 

  10. Hess MW, Benner P (2013) Fast evaluation of time 2013; Harmonic Maxwell’s equations using the reduced basis method. IEEE Trans Microw Theor Techn 61(6):2265–2274

    Article  Google Scholar 

  11. Ladevèze P, Passieux J-C, Néron D (2009) The LATIN multiscale computational method and the Proper Generalized Decomposition. Comput Methods Appl Mech Eng 199(21–22):1287–1296 Elsevier

    MathSciNet  MATH  Google Scholar 

  12. Néron D, Ladevèze P (2010) Proper generalized decomposition for multiscale and multiphysics problems. Archives Comput Methods Eng 17(4):351–372

    Article  MathSciNet  Google Scholar 

  13. Ammar A, Mokdad B, Chinesta F, Keunings R (2006) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J Nonnewton Fluid Mech 139(3):153–176

    Article  Google Scholar 

  14. Ammar A, Mokdad B, Chinesta F, Keunings R (2007) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids: Part Transient simulation using space-time separated representations. J Nonnewton Fluid Mech 144(23):98–121

    Article  Google Scholar 

  15. Chinesta F, Ammar A, Leygue A, Keunings R (2011) An overview of the proper generalized decomposition with applications in computational rheology. J Nonnewton Fluid Mech 166(11):578–592

    Article  Google Scholar 

  16. Hammoud M, Beringhier M, Grandidier J-C (2014) A reduced simulation applied to the viscoelastic fatigue of polymers. Comptes Rendus Mécanique 342(12):671–691

    Article  Google Scholar 

  17. Beringhier M, Gueguen M, Grandidier JC (2010) Solution of strongly coupled multiphysics problems using space-time separated representations application to thermoviscoelasticity. Arch Comput Methods Eng 17(4):393–401

    Article  MathSciNet  Google Scholar 

  18. Nguyen TL (2012) La décomposition propre généralisée pour la résolution de problèmes multiphysiques transitoires couplés dédiés à la mécanique de matériaux - maillage adaptif et couplage avec la MAN, PhD thesis, Ensma

    Google Scholar 

  19. Ammar A, Zghal A, Morel F, Chinesta F (2015) On the space-time separated representation of integral linear viscoelastic models. Comptes Rendus Mécanique 343(4):247–263

    Article  Google Scholar 

  20. Bergheau J-M, Zuchiatti S, Roux J-C, Feulvarch E, Tissot S, Perrin G (2016) The proper generalized decomposition as a space time integrator for elastoplastic problems. Comptes Rendus Mécanique 4863(11):753–806

    Google Scholar 

  21. Comte F, Maitournam H, Burry P, Mac T (2006) Lan Nguyen A direct method for the solution of evolution problems. Comptes Rendus Mécanique 334:317–322

    Article  Google Scholar 

  22. Boisse P, Bussy P, Ladevèze P (1990) A new approach in non-linear mechanics: the large time increment method. Int J Numer Meth Eng 29:647–663

    Article  Google Scholar 

  23. Congnard J-Y, Ladevèze P (1993) A large time increment approach for cyclic viscoplasticity. Int J Plast 9:141–157

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hammoud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

AL Takash, A., Beringhier, M., Hammoud, M., Grandidier, J.C. (2019). On the Validation of the Proper Generalized Decomposition Method with Finite Element Method: 3D Heat Problem Under Cyclic Loading. In: Rizk, R., Awad, M. (eds) Mechanism, Machine, Robotics and Mechatronics Sciences. Mechanisms and Machine Science, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-319-89911-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89911-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89910-7

  • Online ISBN: 978-3-319-89911-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics