Skip to main content

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 49))

Abstract

This work introduces and compares two different CAD-based mesh deformation methods. The methods are used within an adjoint structural shape optimization, which is part of an evolving CAD-based adjoint multidisciplinary optimization framework for turbomachinery components. During an optimization, the CAD geometry is updated at each design iteration, such that the structural mesh has to be deformed appropriately. The mesh is deformed in three stages. First, the nodes along the edges of the outer mesh are displaced to match the shape of the CAD edges, which are given by B-spline curves. Next, the remaining outer mesh nodes are displaced to match the shape of the CAD faces, which are given by B-spline surfaces. Finally, the outer mesh node deformations are used to solve for the inner node deformations using either an inverse distance interpolation or the linear elasticity analogy. Coupling the mesh deformation with an adjoint structural solver enables gradient computations of structural constraints with respect to CAD design parameters. To compare the robustness of the two mesh deformation methods, a CAD-based structural shape optimization using each method was performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\(m \in \mathbb {N}\) :

number of FEM mesh nodes

\(m_i \in \mathbb {N}\) :

number of inner FEM mesh nodes

\(m_o \in \mathbb {N}\) :

number of outer FEM mesh nodes

\(n \in \mathbb {N}\) :

number of CAD design parameters

\(u, v \in \mathbb {R}\) :

B-Spline foot points

\(u_B \in \mathbb {R}\) :

foot point of begin vertex

\(u_B^M \in \mathbb {R}\) :

morphed foot point of begin vertex

\(u_E \in \mathbb {R}\) :

foot point of end vertex

\(u_E^M \in \mathbb {R}\) :

morphed foot point of end vertex

\(\mathbf {b} \in \mathbb {R}^{3m}\) :

load vector

\(\mathbf {u} \in \mathbb {R}^{3m}\) :

FEM mesh displacements

\(\mathbf {u}_{inner} \in \mathbb {R}^{3m_i}\) :

inner FEM mesh displacements

\(\mathbf {u}_{outer} \in \mathbb {R}^{3m_o}\) :

outer FEM mesh displacements

\(\mathbf {x} \in \mathbb {R}^{3m}\) :

FEM mesh coordinates

\(\bar{\mathbf {x}} \in \mathbb {R}^{3m}\) :

adjoint FEM mesh coordinates

\(A \in \mathbb {R}^{3m \times 3m}\) :

stiffness matrix

\(C \in \mathbb {R}^3\) :

B-spline curve

\(C^M \in \mathbb {R}^3\) :

morphed B-spline curve

\(E \in \mathbb {R}\) :

Young’s modulus

\(P \in \mathbb {R}^3\) :

mesh point

\(P^M \in \mathbb {R}^3\) :

morphed mesh point

\(S \in \mathbb {R}^3\) :

B-spline surface

\(S^M \in \mathbb {R}^3\) :

morphed B-spline surface

\(V_B \in \mathbb {R}^3\) :

begin vertex

\(V_B^M \in \mathbb {R}^3\) :

morphed begin vertex

\(V_E \in \mathbb {R}^3\) :

end vertex

\(V_E^M \in \mathbb {R}^3\) :

morphed end vertex

\(\nu \in \mathbb {R}\) :

Poisson’s ratio

\(\sigma _{max} \in \mathbb {R}\) :

maximum von Mises stress

\(\bar{\sigma }_{max} \in \mathbb {R}\) :

adjoint maximum von Mises stress

\(\varvec{\alpha } \in \mathbb {R}^n\) :

CAD design parameters

\(\bar{\varvec{\alpha }} \in \mathbb {R}^n\) :

adjoint CAD design parameters

\(\Delta \in \mathbb {R}\) :

steepest descent step size

References

  • Albring T, Sagebaum M, Gauger NR (2015) Development of a consistent discrete adjoint solver in an evolving aerodynamic design framework. In: 16th AIAA/ISSMO multidisciplinary analysis and optimization conference, p 3240

    Google Scholar 

  • Griewank A, Walther A (2008) Evaluating derivatives: principles and techniques of algorithmic differentiation. Siam

    Google Scholar 

  • Jameson A (1988) Aerodynamic design via control theory. J Sci Comput 3(3):233–260

    Article  Google Scholar 

  • Luo J, Zhou C (2014) Multipoint design optimization of a transonic compressor blade by using an adjoint method. J. Turbomach. 136(5):051005

    Article  Google Scholar 

  • Mueller L, Alsalihi Z, Verstraete T (2013) Multidisciplinary optimization of a turbocharger radial turbine. J. Turbomach. 135(2):021022

    Article  Google Scholar 

  • Naumann U (2012) The art of differentiating computer programs: an introduction to algorithmic differentiation, vol 24. Siam

    Google Scholar 

  • Pironneau O (1974) On optimum design in fluid mechanics. J. Fluid Mech. 64(1):97–110

    Article  MathSciNet  Google Scholar 

  • Schwalbach M, Verstraete T (2016) Towards multidisciplinary adjoint optimization of turbomachinery components. In: Papadrakakis VPM, Papadopoulos V, Stefanou G (eds) Proceedings of the VII European congress on computational methods in applied sciences and engineering, pp 3999–4010

    Google Scholar 

  • Schwalbach M, Verstraete T, Gauger NR (2016) Developments of a discrete adjoint structural solver for shape and composite material optimization. In: The 7th international conference on algorithmic differentiation

    Google Scholar 

  • Verstraete T (2008) Multidisciplinary turbomachinery component optimization considering performance, stress, and internal heat transfer. University of Ghent, Ph.D. thesis

    Google Scholar 

  • Verstraete T (2010) Cado: a computer aided design and optimization tool for turbomachinery applications. In: 2nd international conference on engineering optimization, Lisbon, Portugal, September, pp 6–9

    Google Scholar 

  • Verstraete T, Müller L, Müller JD (2017) CAD based adjoint optimization of the stresses in a radial turbine. In: Proceedings of ASME Turbo Expo 2017: turbine technical conference and exposition

    Google Scholar 

  • Walther B, Nadarajah S (2013) Constrained adjoint-based aerodynamic shape optimization of a single-stage transonic compressor. J Turbomach 135(2):021017

    Article  Google Scholar 

  • Willeke S, Verstraete T (2015) Adjoint optimization of an internal cooling channel u-bend. In: ASME Turbo Expo 2015: turbine technical conference and exposition. American Society of Mechanical Engineers

    Google Scholar 

Download references

Acknowledgements

The work presented in this paper has received funding from the European Commission through the IODA project under grant agreement number 642959.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Schwalbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schwalbach, M., Verstraete, T., Müller, JD., Gauger, N. (2019). A Comparative Study of Two Different CAD-Based Mesh Deformation Methods for Structural Shape Optimization. In: Andrés-Pérez, E., González, L., Periaux, J., Gauger, N., Quagliarella, D., Giannakoglou, K. (eds) Evolutionary and Deterministic Methods for Design Optimization and Control With Applications to Industrial and Societal Problems. Computational Methods in Applied Sciences, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-319-89890-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89890-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89889-6

  • Online ISBN: 978-3-319-89890-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics