Skip to main content

Abstract

The capability to reduce the structural weight of aircrafts, and consequently the fuel consumption, is related to the accuracy of numerical tools and to the efficiency of design methodologies available. In particular, the capability to model the interaction of the several mechanisms involved in physics phenomena represents a key point in the development of engineering design tools. Typical examples are FSI (Fluid-Structure Interaction) analyses in which the capability to properly capture the behaviour of aeroelastic phenomena is crucial. Furthermore, the enhancement of environments able to include structural shape optimizations represents a significant step forward in the development of greener aircrafts. The objectives of the EU RIBES (Radial basis functions at fluid Interface Boundaries to Envelope flow results for advanced Structural analysis) project was to reduce the uncertainness in CFD (Computational Fluid Dynamics)-CSM (Computational Structural Mechanics) aeroelastic analysis numerical methodologies, enhancing the coupling between fluid-dynamic and structural solvers, to improve the confidence on their accuracy and to progress in the development of structural optimization tools. At this aim, the project was focused on the development of an accurate load mapping procedure, on the implementation of an innovative workflow for structural shape optimization and on experimental validation of FSI (Fluid-Structure Interaction) methodologies. Radial Basis Functions (RBF) supply the mathematical foundation for the first two topics. This paper summarizes the results achieved by the project, describes the developed optimization tool and details the experimental campaign conducted to generate a database of measurements on a typical realistic aeronautical wing structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://ribes-project.eu/project.

  2. 2.

    www.rbf-morph.com.

  3. 3.

    www.designmethods.aero.

References

  • Babuska I-M, Melenk J-M (1997) The partition of unity method. Int J Numer Methods Eng 40(4):727–758

    Article  MathSciNet  Google Scholar 

  • Ballmann J (2008) Experimental analysis of high Reynolds number structural dynamics in ETW. In: 46th AIAA aerospace sciences meeting and exhibit, number AIAA 2008-841, Reno, Nevada (US), 7–10 Jan 2008

    Google Scholar 

  • Biancolini ME (2012) Mesh morphing and smoothing by means of radial basis functions (RBF): a practical example using fluent and RBF Morph. Handbook of research on computational science and engineering: theory and practice, IGI Global

    Google Scholar 

  • Biancolini ME, Salvini P (2012) Radial basis functions for the image analysis of deformations. In: Computational modelling of objects represented in images: fundamentals, methods and applications III proceedings of the international symposium. CRC Press, Boca Raton, FL, pp 361–365

    Google Scholar 

  • Biancolini ME, Cella U, Groth C, Genta M (2016) Static aeroelastic analysis of an aircraft wind-tunnel model by means of modal RBF mesh updating. ASCE’s J Aerosp Eng 29(6)

    Google Scholar 

  • Buhmann M-D (2004) Radial basis functions: theory and implementations. Cambridge monographs on applied and computational mathematics. Cambridge University Press, Cambridge

    Google Scholar 

  • Casciola G, Lazzaro D, Montefusco LB, Morigi S (2006) Shape preserving surface reconstruction using locally anisotropic radial basis function interpolants. Comput Math Appl 51(8):1185–1198. https://doi.org/10.1016/j.camwa.2006.04.002

    Article  MathSciNet  MATH  Google Scholar 

  • Cella U Setup and validation of high fidelity aeroelastic analysis methods based on RBF mesh morphing. PhD thesis, University of Rome “Tor Vergata”, cycle XXIX, AA 2015/16

    Google Scholar 

  • Cella U, Biancolini ME (2012) Aeroelastic analysis of aircraft wind-tunnel model coupling structural and fluid dynamic codes. AIAA J Aircr 49(2):407–414

    Article  Google Scholar 

  • Cella U, Biancolini ME, Groth C, Chiappa A, Beltramme D (2015) Development and validation of numerical tools for FSI analysis and structural optimization: the EU RIBES project status. In: AIAS 44th National Congress, 2–5 Sept 2015, Messina, Italy

    Google Scholar 

  • De Boer A, van der Schoot MS, Bijl H (2007) Mesh deformation based on radial basis function interpolation. Comput Struct 85(11–14):784–795

    Article  Google Scholar 

  • Fasshauer GE (1999) Solving differential equations with radial basis functions: multilevel methods and smoothing. Adv Comput Math 11:139–159

    Article  MathSciNet  Google Scholar 

  • Jiao X, Heath M-T (2004) Common-refinement-based data transfer between non-matching meshes in multiphysics simulations. Int J Numer Meth Eng 61(14):2402–2427

    Article  MathSciNet  Google Scholar 

  • Jin R, Chen W, Simpson TW (2001) Comparative studies of metamodelling techniques under multiple modelling criteria. Struct Multi Optim 23(1):1–13

    Article  Google Scholar 

  • Masud A, Bhanabhagvanwala M, Khurram RA (2007) An adaptive mesh rezoning scheme for moving boundary flows and fluid-structure interaction. Comput Fluids 36(1):77–91

    Article  MathSciNet  Google Scholar 

  • McKay MD, Beckman RJ, Conover WJ (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2):239–245

    MathSciNet  MATH  Google Scholar 

  • Sederberg TW, Parry SR (1986) Free-form deformation of solid geometric models. In: Evans DC and Athay RJ (eds) 13th conference on computer graphics and interactive techniques. New York, pp 151–160

    Google Scholar 

  • Zadeh L-A (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  Google Scholar 

Download references

Acknowledgements

The RIBES project was funded by the European Union within the 7th Framework aeronautics programme JTI-CS-GRA (Joint Technology Initiatives—Clean Sky—Green Regional Aircraft) under Grant Agreement no. 632556.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Chiappa .

Editor information

Editors and Affiliations

Appendix

Appendix

See Figs. 11, 12 and 13.

Fig. 12
figure 12

RIBES WT model installed in the test section

Fig. 13
figure 13

FEM solution of the 2-way FSI analysis on the RIBES WT model

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Biancolini, M.E., Cella, U., Groth, C., Chiappa, A., Giorgetti, F., Nicolosi, F. (2019). Progresses in Fluid-Structure Interaction and Structural Optimization Numerical Tools Within the EU CS RIBES Project. In: Andrés-Pérez, E., González, L., Periaux, J., Gauger, N., Quagliarella, D., Giannakoglou, K. (eds) Evolutionary and Deterministic Methods for Design Optimization and Control With Applications to Industrial and Societal Problems. Computational Methods in Applied Sciences, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-319-89890-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89890-2_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89889-6

  • Online ISBN: 978-3-319-89890-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics