Skip to main content

Polymeric Nanoparticles for Cancer Therapy and Bioimaging

  • Chapter
  • First Online:
Nanooncology

Abstract

Polymeric nanoparticles have demonstrated to be good candidates as vehicles of drugs or molecules for combined treatment and diagnosis of cancer. In comparison with inorganic nanoparticulated systems, they present remarkable benefits in terms of stability, biocompatibility, biodegradability, tailorability and low cost. Polymeric nanoparticles can be design to passively or actively accumulate in tumor sites by controlling their hydrodynamic properties or functionalizing their surface with targeting molecules. Moreover, polymers responding to particular tumor microenvironment conditions like reduced pH, high levels of reactive oxygen species or overexpressed enzymes, can be used to trigger a controlled drug delivery, a contrast agent exposure, or to enhance the therapeutic effect of a theranostic system. This chapter focuses on the most recent advances in this field by discussing in depth examples of nanoparticles that, exploiting all these strategies, can be visualized with one or more imaging techniques: optical imaging, MRI, US, PA, PET, SPECT or CT; and present therapeutic effect (i.e. chemotherapy, gene therapy, photothermal or photodynamic therapy) due to the presence of active moieties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luk BT, Zhang L (2014) Current advances in polymer-based nanotheranostics for cancer treatment and diagnosis. ACS Appl Mater Interfaces 6(24):21859–21873

    Article  CAS  Google Scholar 

  2. Methachan B, Thanapprapasr K (2017) Polymer-based materials in cancer treatment: from therapeutic carrier and ultrasound contrast agent to theranostic applications. Ultrasound Med Biol 43(1):69–82

    Article  Google Scholar 

  3. Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63(3):136–151

    Article  CAS  Google Scholar 

  4. Mi P et al (2017) Molecular cancer imaging with polymeric nanoassemblies: from tumor detection to theranostics. Macromol Biosci 17(1):1600305

    Article  CAS  Google Scholar 

  5. Aguilar MR, San Román J (2014) 1—Introduction to smart polymers and their applications, in smart polymers and their applications. Woodhead Publishing, pp 1–11

    Google Scholar 

  6. Gao M et al (2017) Tumor acidity-activatable TAT targeted nanomedicine for enlarged fluorescence/magnetic resonance imaging-guided photodynamic therapy. Biomaterials 133:165–175

    Article  CAS  Google Scholar 

  7. Liu T et al (2012) Multifunctional pH-disintegrable micellar nanoparticles of asymmetrically functionalized beta-cyclodextrin-based star copolymer covalently conjugated with doxorubicin and DOTA-Gd moieties. Biomaterials 33(8):2521–2531

    Article  CAS  Google Scholar 

  8. Liu Y et al (2014) Multifunctional pH-sensitive polymeric nanoparticles for theranostics evaluated experimentally in cancer. Nanoscale 6(6):3231–3242

    Article  CAS  Google Scholar 

  9. Min KH et al (2015) pH-controlled gas-generating mineralized nanoparticles: a theranostic agent for ultrasound imaging and therapy of cancers. ACS Nano 9(1):134–145

    Article  CAS  Google Scholar 

  10. Gao X et al (2016) Biodegradable gadolinium-chelated cationic poly(urethane amide) copolymers for gene transfection and magnetic resonance imaging. Mater Sci Eng C Mater Biol Appl 65:181–187

    Article  CAS  Google Scholar 

  11. Vinh NQ et al (2015) MRI-detectable polymeric micelles incorporating platinum anticancer drugs enhance survival in an advanced hepatocellular carcinoma model. Int J Nanomed 10:4137–4147

    CAS  Google Scholar 

  12. Liu, T.-M., et al (2017) Smart NIR linear and nonlinear optical nanomaterials for cancer theranostics: prospects in photomedicine. Progr Mat Sci

    Article  CAS  Google Scholar 

  13. Song X, Chen Q, Liu Z (2015) Recent advances in the development of organic photothermal nano-agents. Nano Res 8(2):340–354

    Article  CAS  Google Scholar 

  14. Luo S et al (2011) A review of NIR dyes in cancer targeting and imaging. Biomaterials 32(29):7127–7138

    Article  CAS  Google Scholar 

  15. Yuan A et al (2013) Application of near-infrared dyes for tumor imaging, photothermal, and photodynamic therapies. J Pharm Sci 102(1):6–28

    Article  CAS  Google Scholar 

  16. Shi Y et al (2017) Recent progress and development on polymeric nanomaterials for photothermal therapy: a brief overview. J Mat Chem B 5(2):194–206

    Article  CAS  Google Scholar 

  17. Sortino S (2016) Light-responsive nanostructured systems for applications in nanomedicine. Springer, Berlin

    Google Scholar 

  18. Zheng M et al (2014) Robust ICG theranostic nanoparticles for folate targeted cancer imaging and highly effective photothermal therapy. ACS Appl Mater Interfaces 6(9):6709–6716

    Article  CAS  Google Scholar 

  19. Wan Z et al (2014) Highly efficient hierarchical micelles integrating photothermal therapy and singlet oxygen-synergized chemotherapy for cancer eradication. Theranostics 4(4):399

    Article  CAS  Google Scholar 

  20. Zheng M et al (2013) Single-step assembly of DOX/ICG loaded lipid–polymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS Nano 7(3):2056–2067

    Article  CAS  Google Scholar 

  21. Zhu A et al (2015) Dually pH/reduction-responsive vesicles for ultrahigh-contrast fluorescence imaging and thermo-chemotherapy-synergized tumor ablation. ACS Nano 9(8):7874–7885

    Article  CAS  Google Scholar 

  22. Zhuoxuan Lu, H FY, Cao Rong, Lin Ying-Ying, Zhou Songlin, Zhao Huange, Yonghao Huang AG-HT, Zhang Liming (2017) Synthesis of mPEG-dBSA-Cy5.5 nanoparticles for tumor imaging and drug delivery. Nanosci Nanotechnol Lett 9:184–189

    Article  Google Scholar 

  23. Duan Z et al (2017) Stimuli-sensitive biodegradable and amphiphilic block copolymer-gemcitabine conjugates self-assemble into a nanoscale vehicle for cancer therapy. ACS Appl Mater Interfaces 9(4):3474–3486

    Article  CAS  Google Scholar 

  24. Hill TK et al (2016) Near infrared fluorescent nanoparticles derived from hyaluronic acid improve tumor contrast for image-guided surgery. Theranostics 6(13):2314–2328

    Article  CAS  Google Scholar 

  25. Lee Y-H, Lai Y-H (2016) Synthesis, characterization, and biological evaluation of anti-HER2 indocyanine green-encapsulated PEG-coated PLGA nanoparticles for targeted phototherapy of breast cancer cells. PLoS ONE 11(12):e0168192

    Article  CAS  Google Scholar 

  26. Hung C-C et al (2017) Active tumor permeation and uptake of surface charge-switchable theranostic nanoparticles for imaging-guided photothermal/chemo combinatorial therapy: erratum. Theranostics 7(3):559

    Article  Google Scholar 

  27. Fu L et al (2016) Folic acid targeted pH-responsive amphiphilic polymer nanoparticles conjugated with near infrared fluorescence probe for imaging-guided drug delivery. RSC Adv 6(46):40312–40322

    Article  CAS  Google Scholar 

  28. Ge R et al (2017) Cu2+ loaded polydopamine nanoparticles for magnetic resonance imaging-guided pH- and near-infrared-light-stimulated thermochemotherapy. ACS Appl Mater Interfaces 9(23):19706–19716

    Article  CAS  Google Scholar 

  29. Fernandez-Fernandez A et al (2014) Covalent IR820-PEG-diamine nanoconjugates for theranostic applications in cancer. Int J Nanomed 9:4631

    Article  CAS  Google Scholar 

  30. Duong T et al (2017) Phototheranostic nanoplatform based on a single cyanine dye for image-guided combinatorial phototherapy. Nanomed Nanotechnol Biol Med 13(3):955–963

    Article  CAS  Google Scholar 

  31. Conceição DS, Ferreira DP, Ferreira LFV (2013) Photochemistry and cytotoxicity evaluation of heptamethinecyanine near infrared (NIR) dyes. Int J Mol Sci 14(9):18557–18571

    Article  CAS  Google Scholar 

  32. Tan X et al (2012) A NIR heptamethine dye with intrinsic cancer targeting, imaging and photosensitizing properties. Biomaterials 33(7):2230–2239

    Article  CAS  Google Scholar 

  33. Wang Y et al (2014) Preferential accumulation of the near infrared heptamethine dye IR-780 in the mitochondria of drug-resistant lung cancer cells. Biomaterials 35(13):4116–4124

    Article  CAS  Google Scholar 

  34. Zhang X et al (2014) Methotrexate-loaded PLGA nanobubbles for ultrasound imaging and synergistic targeted therapy of residual tumor during HIFU ablation. Biomaterials 35(19):5148–5161

    Article  CAS  Google Scholar 

  35. Yuan A et al (2015) Self-assembled PEG-IR-780-C13 micelle as a targeting, safe and highly-effective photothermal agent for in vivo imaging and cancer therapy. Biomaterials 51:184–193

    Article  CAS  Google Scholar 

  36. Yue C et al (2013) IR-780 dye loaded tumor targeting theranostic nanoparticles for NIR imaging and photothermal therapy. Biomaterials 34(28):6853–6861

    Article  CAS  Google Scholar 

  37. Palao-Suay R, et al (2017) Photothermal and photodynamic activity of polymeric nanoparticles based on α-tocopheryl succinate-RAFT block copolymers conjugated to IR-780. Acta Biomat

    Google Scholar 

  38. Gong H et al (2014) Engineering of multifunctional nano-micelles for combined photothermal and photodynamic therapy under the guidance of multimodal imaging. Adv Func Mater 24(41):6492–6502

    Article  CAS  Google Scholar 

  39. Guo F et al (2015) Smart IR780 theranostic nanocarrier for tumor-specific therapy: hyperthermia-mediated bubble-generating and folate-targeted liposomes. ACS Appl Mater Interfaces 7(37):20556–20567

    Article  CAS  Google Scholar 

  40. Hamon CL et al (2016) Near-infrared fluorescent aza-BODIPY dye-loaded biodegradable polymeric nanoparticles for optical cancer imaging. J Nanopart Res 18(7):207

    Article  CAS  Google Scholar 

  41. Ruan Z et al (2017) NIR imaging-guided combined photodynamic therapy and chemotherapy by a pH-responsive amphiphilic polypeptide prodrug. Biomat Sci 5(2):313–321

    Article  CAS  Google Scholar 

  42. Pellosi DS et al (2017) Multifunctional theranostic pluronic mixed micelles improve targeted photoactivity of verteporfin in cancer cells. Mater Sci Eng, C 71:1–9

    Article  CAS  Google Scholar 

  43. Chen R et al (2013) Near-IR-triggered photothermal/photodynamic dual-modality therapy system via chitosan hybrid nanospheres. Biomaterials 34(33):8314–8322

    Article  CAS  Google Scholar 

  44. Oh I-H et al (2013) Cancer cell-specific photoactivity of pheophorbide a-glycol chitosan nanoparticles for photodynamic therapy in tumor-bearing mice. Biomaterials 34(27):6454–6463

    Article  CAS  Google Scholar 

  45. Cohen EM et al (2010) Polymeric micelle nanoparticles for photodynamic treatment of head and neck cancer cells. Otolaryngology-Head and Neck Surgery 143(1):109–115

    Article  Google Scholar 

  46. Conte C et al (2013) Biodegradable core-shell nanoassemblies for the delivery of docetaxel and Zn (II)-phthalocyanine inspired by combination therapy for cancer. J Controlled Release 167(1):40–52

    Article  CAS  Google Scholar 

  47. Lee DJ et al (2012) Multifunctional poly (lactide-co-glycolide) nanoparticles for luminescence/magnetic resonance imaging and photodynamic therapy. Int J Pharm 434(1):257–263

    Article  CAS  Google Scholar 

  48. Gupta A et al (2012) Multifunctional nanoplatforms for fluorescence imaging and photodynamic therapy developed by post-loading photosensitizer and fluorophore to polyacrylamide nanoparticles. Nanomed Nanotechnol Biol Med 8(6):941–950

    Article  CAS  Google Scholar 

  49. Lamch Ł et al (2014) Polymeric micelles for enhanced Photofrin II® delivery, cytotoxicity and pro-apoptotic activity in human breast and ovarian cancer cells. Photodiagn Photodyn Ther 11(4):570–585

    Article  CAS  Google Scholar 

  50. Sahu A et al (2013) Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy. Biomaterials 34(26):6239–6248

    Article  CAS  Google Scholar 

  51. Vijayan VM, Muthu J (2017) Polymeric nanocarriers for cancer theranostics. Polym Adv Technol

    Article  CAS  Google Scholar 

  52. Liu Q et al (2017) A superparamagnetic polymersome with extremely high T2 relaxivity for MRI and cancer-targeted drug delivery. Biomaterials 114:23–33

    Article  CAS  Google Scholar 

  53. Li X et al (2013) Acid-triggered core cross-linked nanomicelles for targeted drug delivery and magnetic resonance imaging in liver cancer cells. Int J Nanomed 8:3019

    Google Scholar 

  54. Yang X et al (2010) Multifunctional stable and pH-responsive polymer vesicles formed by heterofunctional triblock copolymer for targeted anticancer drug delivery and ultrasensitive MR imaging. ACS Nano 4(11):6805–6817

    Article  CAS  Google Scholar 

  55. Sun W et al (2017) Gadolinium-loaded poly(N-vinylcaprolactam) nanogels: synthesis, characterization, and application for enhanced tumor MR imaging. ACS Appl Mater Interfaces 9(4):3411–3418

    Article  CAS  Google Scholar 

  56. Caro C, García-Martín ML, Pernia Leal M (2017) Manganese-based nanogels as pH switches for magnetic resonance imaging. Biomacromol 18(5):1617–1623

    Article  CAS  Google Scholar 

  57. Chen Y et al (2016) Polydopamine-based coordination nanocomplex for T1/T2 dual mode magnetic resonance imaging-guided chemo-photothermal synergistic therapy. Biomaterials 77:198–206

    Article  CAS  Google Scholar 

  58. Cao Y et al (2017) Poly(glycerol) used for constructing mixed polymeric micelles as T1 MRI contrast agent for tumor-targeted imaging. Biomacromol 18(1):150–158

    Article  CAS  Google Scholar 

  59. Dong X et al (2017) Preparation of MRI-visible gadolinium methacrylate nanoparticles with low cytotoxicity and high magnetic relaxivity. J Mat Sci 52(13):7625–7636

    Article  CAS  Google Scholar 

  60. Esser L et al (2016) Gadolinium-functionalized nanoparticles for application as magnetic resonance imaging contrast agents via polymerization-induced self-assembly. Polym Chem 7(47):7325–7337

    Article  CAS  Google Scholar 

  61. Sanson C et al (2011) Doxorubicin loaded magnetic polymersomes: theranostic nanocarriers for MR imaging and magneto-chemotherapy. ACS Nano 5(2):1122–1140

    Article  CAS  Google Scholar 

  62. Wang C et al (2012) Dual-purpose magnetic micelles for MRI and gene delivery. J Control Release 163(1):82–92

    Article  CAS  Google Scholar 

  63. Chiang WH et al (2013) Functionalized polymersomes with outlayered polyelectrolyte gels for potential tumor-targeted delivery of multimodal therapies and MR imaging. J Control Release 168(3):280–288

    Article  CAS  Google Scholar 

  64. Qin J et al (2015) Rationally separating the corona and membrane functions of polymer vesicles for enhanced T(2) MRI and drug delivery. ACS Appl Mater Interfaces 7(25):14043–14052

    Article  CAS  Google Scholar 

  65. Schleich N et al (2013) Dual anticancer drug/superparamagnetic iron oxide-loaded PLGA-based nanoparticles for cancer therapy and magnetic resonance imaging. Int J Pharm 447(1–2):94–101

    Article  CAS  Google Scholar 

  66. Yoon HY et al (2012) Hydrotropic magnetic micelles for combined magnetic resonance imaging and cancer therapy. J Control Release 160(3):692–698

    Article  CAS  Google Scholar 

  67. Ao L et al (2014) A folate-integrated magnetic polymer micelle for MRI and dual targeted drug delivery. Nanoscale 6(18):10710–10716

    Article  CAS  Google Scholar 

  68. Ling Y et al (2011) Dual docetaxel/superparamagnetic iron oxide loaded nanoparticles for both targeting magnetic resonance imaging and cancer therapy. Biomaterials 32(29):7139–7150

    Article  CAS  Google Scholar 

  69. Dadras P et al (2017) Formulation and evaluation of targeted nanoparticles for breast cancer theranostic system. Eur J Pharm Sci 97:47–54

    Article  CAS  Google Scholar 

  70. Guthi JS et al (2010) MRI-visible micellar nanomedicine for targeted drug delivery to lung cancer cells. Mol Pharm 7(1):32–40

    Article  CAS  Google Scholar 

  71. Mosafer J et al (2017) In vitro and in vivo evaluation of anti-nucleolin-targeted magnetic PLGA nanoparticles loaded with doxorubicin as a theranostic agent for enhanced targeted cancer imaging and therapy. Eur J Pharm Biopharm 113:60–74

    Article  CAS  Google Scholar 

  72. Situ J-Q et al (2016) Multifunctional SPIO/DOX-loaded A54 homing peptide functionalized dextran-g-PLGA micelles for tumor therapy and MR imaging. Sci Rep 6:35910

    Article  CAS  Google Scholar 

  73. Yang H-K et al (2017) Bioreducible amphiphilic block copolymers based on PCL and glycopolypeptide as multifunctional theranostic nanocarriers for drug delivery and MR imaging. RSC Adv 7(34):21093–21106

    Article  CAS  Google Scholar 

  74. Zhu K et al (2017) Photoregulated cross-linking of superparamagnetic iron oxide nanoparticle (SPION) loaded hybrid nanovectors with synergistic drug release and magnetic resonance (MR) imaging enhancement. Macromolecules 50(3):1113–1125

    Article  CAS  Google Scholar 

  75. Jaiswal MK et al (2014) Thermoresponsive magnetic hydrogels as theranostic nanoconstructs. ACS Appl Mater Interfaces 6(9):6237–6247

    Article  CAS  Google Scholar 

  76. Chiang W-H et al (2013) Functionalized polymersomes with outlayered polyelectrolyte gels for potential tumor-targeted delivery of multimodal therapies and MR imaging. J Controlled Release 168(3):280–288

    Article  CAS  Google Scholar 

  77. Chiang W-H et al (2013) Superparamagnetic hollow hybrid nanogels as a potential guidable vehicle system of stimuli-mediated MR imaging and multiple cancer therapeutics. Langmuir 29(21):6434–6443

    Article  CAS  Google Scholar 

  78. Liu Q et al (2015) An asymmetrical polymer vesicle strategy for significantly improving T1 MRI sensitivity and cancer-targeted drug delivery. Macromolecules 48(3):739–749

    Article  CAS  Google Scholar 

  79. Li X et al (2011) Amphiphilic multiarm star block copolymer-based multifunctional unimolecular micelles for cancer targeted drug delivery and MR imaging. Biomaterials 32(27):6595–6605

    Article  CAS  Google Scholar 

  80. Zarabi B et al (2008) HPMA copolymer–doxorubicin–gadolinium conjugates: synthesis, characterization, and in vitro evaluation. Macromol Biosci 8(8):741–748

    Article  CAS  Google Scholar 

  81. Liu R et al (2015) Paramagnetic, pH and temperature-sensitive polymeric particles for anticancer drug delivery and brain tumor magnetic resonance imaging. RSC Adv 5(106):87512–87520

    Article  CAS  Google Scholar 

  82. Li Y et al (2015) Nanoparticles based on star polymers as theranostic vectors: endosomal-triggered drug release combined with mri sensitivity. Adv Healthcare Mat 4(1):148–156

    Article  CAS  Google Scholar 

  83. Li Y et al (2012) Light-triggered concomitant enhancement of magnetic resonance imaging contrast performance and drug release rate of functionalized amphiphilic diblock copolymer micelles. Biomacromol 13(11):3877–3886

    Article  CAS  Google Scholar 

  84. Tong G et al (2016) Gadolinium/DOTA functionalized poly(ethylene glycol)-block-poly(acrylamide-co-acrylonitrile) micelles with synergistically enhanced cellular uptake for cancer theranostics. RSC Adv 6(56):50534–50542

    Article  CAS  Google Scholar 

  85. Wen Y et al (2016) Nano-assembly of bovine serum albumin driven by rare-earth-ion (Gd) biomineralization for highly efficient photodynamic therapy and tumor imaging. J Mat Chem B 4(4):743–751

    Article  CAS  Google Scholar 

  86. Chen AY, Zirwas MJ, Heffernan MP (2010) Nephrogenic systemic fibrosis: a review. J Drugs Dermatol 9(7):829–834

    Google Scholar 

  87. Pan D et al (2011) Manganese-based MRI contrast agents: past, present and future. Tetrahedron 67(44):8431–8444

    Article  CAS  Google Scholar 

  88. Jing L et al (2013) Covalent attachment of Mn-porphyrin onto doxorubicin-loaded poly(lactic acid) nanoparticles for potential magnetic resonance imaging and pH-sensitive drug delivery. Acta Biomater 9(12):9434–9441

    Article  CAS  Google Scholar 

  89. Xi J et al (2017) Mn(2+)-coordinated PDA@DOX/PLGA nanoparticles as a smart theranostic agent for synergistic chemo-photothermal tumor therapy. Int J Nanomed 12:3331–3345

    Article  Google Scholar 

  90. Miao Z-H et al (2015) Intrinsically Mn2+ -chelated polydopamine nanoparticles for simultaneous magnetic resonance imaging and photothermal ablation of cancer cells. ACS Appl Mater Interfaces 7(31):16946–16952

    Article  CAS  Google Scholar 

  91. Dong Z et al (2016) Polydopamine nanoparticles as a versatile molecular loading platform to enable imaging-guided cancer combination therapy. Theranostics 6(7):1031–1042

    Article  CAS  Google Scholar 

  92. Ding X et al (2016) Polydopamine coated manganese oxide nanoparticles with ultrahigh relaxivity as nanotheranostic agents for magnetic resonance imaging guided synergetic chemo-/photothermal therapy. Chem Sci 7(11):6695–6700

    Article  CAS  Google Scholar 

  93. Hao Y et al (2017) Multifunctional nanoplatform for enhanced photodynamic cancer therapy and magnetic resonance imaging. Colloids Surf, B 151:384–393

    Article  CAS  Google Scholar 

  94. Ruiz-Cabello J et al (2011) Fluorine ((19)F) MRS and MRI in biomedicine. NMR Biomed 24(2):114–129

    Article  CAS  Google Scholar 

  95. Porsch C et al (2013) In vitro evaluation of non-protein adsorbing breast cancer theranostics based on 19f-polymer containing nanoparticles. Part Part Syst Charact 30(4):381–390

    Article  CAS  Google Scholar 

  96. Liu Y, Ai K, Lu L (2012) Nanoparticulate X-ray computed tomography contrast agents: from design validation to in vivo applications. Acc Chem Res 45(10):1817–1827

    Article  CAS  Google Scholar 

  97. Song G, et al (2017) Emerging nanotechnology and advanced materials for cancer radiation therapy. Adv Mat

    Article  CAS  Google Scholar 

  98. Lee N, Choi SH, Hyeon T (2013) Nano-sized CT contrast agents. Adv Mater 25(19):2641–2660

    Article  CAS  Google Scholar 

  99. Anton N, Vandamme TF (2014) Nanotechnology for computed tomography: a real potential recently disclosed. Pharm Res 31(1):20–34

    Article  CAS  Google Scholar 

  100. Li X et al (2013) Iodinated α-tocopherol nano-emulsions as non-toxic contrast agents for preclinical X-ray imaging. Biomaterials 34(2):481–491

    Article  CAS  Google Scholar 

  101. Du F et al (2017) Hyaluronic acid-functionalized bismuth oxide nanoparticles for computed tomography imaging-guided radiotherapy of tumor. Int J Nanomed 12:5973

    Article  Google Scholar 

  102. Al Zaki A et al (2014) Gold-loaded polymeric micelles for computed tomography-guided radiation therapy treatment and radiosensitization. ACS Nano 8(1):104–112

    Article  CAS  Google Scholar 

  103. Yao M-H et al (2014) Multifunctional Bi 2 S 3/PLGA nanocapsule for combined HIFU/radiation therapy. Biomaterials 35(28):8197–8205

    Article  CAS  Google Scholar 

  104. Zhao J, Zhou M, Li C (2016) Synthetic nanoparticles for delivery of radioisotopes and radiosensitizers in cancer therapy. Cancer Nanotechnol 7(1):9

    Article  CAS  Google Scholar 

  105. Heckert B et al (2017) Design and synthesis of new sulfur-containing hyperbranched polymer and theranostic nanomaterials for bimodal imaging and treatment of cancer. ACS Macro Lett 6(3):235–240

    Article  CAS  Google Scholar 

  106. Pant K, et al (2017) Radiolabelled polymeric materials for imaging and treatment of cancer: Quo Vadis? Adv Healthcare Mat

    Google Scholar 

  107. Di Mauro PP et al (2015) Novel 18F labeling strategy for polyester-based NPs for in vivo PET-CT imaging. Bioconjug Chem 26(3):582–592

    Article  CAS  Google Scholar 

  108. Yamamoto F et al (2013) Radiosynthesis and initial evaluation of 18 F labeled nanocarrier composed of poly (l-lactic acid)-block-poly (sarcosine) amphiphilic polydepsipeptide. Nucl Med Biol 40(3):387–394

    Article  CAS  Google Scholar 

  109. Stigliano C et al (2015) Radiolabeled polymeric nanoconstructs loaded with docetaxel and curcumin for cancer combinatorial therapy and nuclear imaging. Adv Func Mater 25(22):3371–3379

    Article  CAS  Google Scholar 

  110. Simone EA et al (2012) Endothelial targeting of polymeric nanoparticles stably labeled with the PET imaging radioisotope iodine-124. Biomaterials 33(21):5406–5413

    Article  CAS  Google Scholar 

  111. Miura Y et al (2015) Polymeric micelle platform for multimodal tomographic imaging to detect scirrhous gastric cancer. ACS Biomat Sci Eng 1(11):1067–1076

    Article  CAS  Google Scholar 

  112. Laan AC et al (2016) Radiolabeling polymeric micelles for in vivo evaluation: a novel, fast, and facile method. EJNMMI Res 6(1):12

    Article  CAS  Google Scholar 

  113. Peng C-L et al (2011) Multimodal image-guided photothermal therapy mediated by 188Re-labeled micelles containing a cyanine-type photosensitizer. ACS Nano 5(7):5594–5607

    Article  CAS  Google Scholar 

  114. Zhang L et al (2010) Delivery of therapeutic radioisotopes using nanoparticle platforms: potential benefit in systemic radiation therapy. Nanotechnol, Sci Appl 3:159

    CAS  Google Scholar 

  115. Mi Y et al (2016) Application of nanotechnology to cancer radiotherapy. Cancer Nanotechnol 7(1):11

    Article  CAS  Google Scholar 

  116. Huang P et al (2015) Co-delivery of doxorubicin and 131 I by thermosensitive micellar-hydrogel for enhanced in situ synergetic chemoradiotherapy. J Controlled Release 220:456–464

    Article  CAS  Google Scholar 

  117. Rossin R et al (2005) 64Cu-labeled folate-conjugated shell cross-linked nanoparticles for tumor imaging and radiotherapy: synthesis, radiolabeling, and biologic evaluation. J Nucl Med 46(7):1210–1218

    Google Scholar 

  118. Werner ME et al (2011) Folate-targeted nanoparticle delivery of chemo-and radiotherapeutics for the treatment of ovarian cancer peritoneal metastasis. Biomaterials 32(33):8548–8554

    Article  CAS  Google Scholar 

  119. Wang AZ et al (2010) ChemoRad nanoparticles: a novel multifunctional nanoparticle platform for targeted delivery of concurrent chemoradiation. Nanomedicine 5(3):361–368

    Article  CAS  Google Scholar 

  120. Schaal JL et al (2016) Injectable polypeptide micelles that form radiation crosslinked hydrogels in situ for intratumoral radiotherapy. J Controlled Release 228:58–66

    Article  CAS  Google Scholar 

  121. Jin C et al (2008) Cellular uptake and radiosensitization of SR-2508 loaded PLGA nanoparticles. J Nanopart Res 10(6):1045–1052

    Article  CAS  Google Scholar 

  122. Menon JU et al (2015) Polymeric nanoparticles for targeted radiosensitization of prostate cancer cells. J Biomed Mater Res, Part A 103(5):1632–1639

    Article  CAS  Google Scholar 

  123. Yallapu MM et al (2010) Curcumin induces chemo/radio-sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth. J Ovarian Res 3(1):11

    Article  CAS  Google Scholar 

  124. Au KM et al (2015) Improving cancer chemoradiotherapy treatment by dual controlled release of wortmannin and docetaxel in polymeric nanoparticles. ACS Nano 9(9):8976–8996

    Article  CAS  Google Scholar 

  125. Gao Z et al (2008) Drug-loaded nano/microbubbles for combining ultrasonography and targeted chemotherapy. Ultrasonics 48(4):260–270

    Article  CAS  Google Scholar 

  126. Ji G, Yang J, Chen J (2014) Preparation of novel curcumin-loaded multifunctional nanodroplets for combining ultrasonic development and targeted chemotherapy. Int J Pharm 466(1–2):314–320

    Article  CAS  Google Scholar 

  127. Yang H et al (2015) Multifunctional PLGA nanobubbles as theranostic agents: combining doxorubicin and P-gp siRNA Co-Delivery into human breast cancer cells and ultrasound cellular imaging. J Biomed Nanotechnol 11(12):2124–2136

    Article  CAS  Google Scholar 

  128. Meng M et al (2016) Doxorubicin nanobubble for combining ultrasonography and targeted chemotherapy of rabbit with VX2 liver tumor. Tumour Biol 37(7):8673–8680

    Article  CAS  Google Scholar 

  129. Baghbani F, et al (2016) Novel alginate-stabilized doxorubicin-loaded nanodroplets for ultrasounic theranosis of breast cancer. Int J Biol Macromol 93(Pt A):512–519

    Article  CAS  Google Scholar 

  130. Lee JY et al (2015) Nanoparticle-loaded protein-polymer nanodroplets for improved stability and conversion efficiency in ultrasound imaging and drug delivery. Adv Mater 27(37):5484–5492

    Article  CAS  Google Scholar 

  131. Min HS et al (2016) Chemical gas-generating nanoparticles for tumor-targeted ultrasound imaging and ultrasound-triggered drug delivery. Biomaterials 108:57–70

    Article  CAS  Google Scholar 

  132. Yang P et al (2014) Stimuli-responsive biodegradable poly(methacrylic acid) based nanocapsules for ultrasound traced and triggered drug delivery system. Biomaterials 35(6):2079–2088

    Article  CAS  Google Scholar 

  133. Valluru KS, Willmann JK (2016) Clinical photoacoustic imaging of cancer. Ultrasonography 35(4):267–280

    Article  Google Scholar 

  134. Zhang J, et al (2017) Biocompatible D–A semiconducting polymer nanoparticle with light-harvesting unit for highly effective photoacoustic imaging guided photothermal therapy. Adv Func Mat 27(13):1605094-n/a

    Article  CAS  Google Scholar 

  135. Zhou W et al (2016) Aromatic cyanoalkylation through double C-H activation mediated by Ni(III). J Am Chem Soc 138(18):5777–5780

    Article  CAS  Google Scholar 

  136. Liu Y et al (2016) Human induced pluripotent stem cells for tumor targeted delivery of gold nanorods and enhanced photothermal therapy. ACS Nano 10(2):2375–2385

    Article  CAS  Google Scholar 

  137. Cheng L et al (2014) PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Adv Mater 26(12):1886–1893

    Article  CAS  Google Scholar 

  138. Sim C et al (2015) Photoacoustic-based nanomedicine for cancer diagnosis and therapy. J Control Release 203:118–125

    Article  CAS  Google Scholar 

  139. Yan Y et al (2017) Heteropoly blue doped polymer nanoparticles: an efficient theranostic agent for targeted photoacoustic imaging and near-infrared photothermal therapy in vivo. J Mat Chem B 5(2):382–387

    Article  CAS  Google Scholar 

  140. Bharathiraja S et al (2017) Astaxanthin conjugated polypyrrole nanoparticles as a multimodal agent for photo-based therapy and imaging. Int J Pharm 517(1):216–225

    Article  CAS  Google Scholar 

  141. Lyu Y et al (2016) Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy. ACS Nano 10(4):4472–4481

    Article  CAS  Google Scholar 

  142. Wang YJ, Strohm EM, Kolios MC (2016) Biodegradable polymer based theranostic agents for photoacoustic imaging and cancer therapy. In: SPIE BiOS. SPIE

    Google Scholar 

  143. Lin W et al (2016) Near-infrared polymeric nanoparticles with high content of cyanine for bimodal imaging and photothermal therapy. ACS Appl Mater Interfaces 8(37):24426–24432

    Article  CAS  Google Scholar 

  144. Song X et al (2014) Ultra-small iron oxide doped polypyrrole nanoparticles for in vivo multimodal imaging guided photothermal therapy. Adv Func Mater 24(9):1194–1201

    Article  CAS  Google Scholar 

  145. Li W et al (2016) Smart hyaluronidase-actived theranostic micelles for dual-modal imaging guided photodynamic therapy. Biomaterials 101:10–19

    Article  CAS  Google Scholar 

  146. Wang T et al (2016) Intracellularly acid-switchable multifunctional micelles for combinational photo/chemotherapy of the drug-resistant tumor. ACS Nano 10(3):3496–3508

    Article  CAS  Google Scholar 

  147. Jin Y et al (2015) Hyaluronic acid modified tantalum oxide nanoparticles conjugating doxorubicin for targeted cancer theranostics. Bioconjug Chem 26(12):2530–2541

    Article  CAS  Google Scholar 

  148. Abbasi AZ et al (2015) Manganese oxide and docetaxel co-loaded fluorescent polymer nanoparticles for dual modal imaging and chemotherapy of breast cancer. J Control Release 209:186–196

    Article  CAS  Google Scholar 

  149. Liu R et al (2016) Smart polymeric particle encapsulated gadolinium oxide and europium: theranostic probes for magnetic resonance/optical imaging and antitumor drug delivery. J Mat Chem B 4(6):1100–1107

    Article  CAS  Google Scholar 

  150. Vu-Quang H et al (2016) Theranostic tumor targeted nanoparticles combining drug delivery with dual near infrared and 19F magnetic resonance imaging modalities. Nanomedicine 12(7):1873–1884

    Article  CAS  Google Scholar 

  151. Park JS et al (2013) Poly(N-isopropylacrylamide-co-acrylic acid) nanogels for tracing and delivering genes to human mesenchymal stem cells. Biomaterials 34(34):8819–8834

    Article  CAS  Google Scholar 

  152. Asem H et al (2016) Biodistribution of biodegradable polymeric nano-carriers loaded with busulphan and designed for multimodal imaging. J Nanobiotechnol 14:82

    Article  CAS  Google Scholar 

  153. Jin Y et al (2014) Encapsulating tantalum oxide into polypyrrole nanoparticles for X-ray CT/photoacoustic bimodal imaging-guided photothermal ablation of cancer. Biomaterials 35(22):5795–5804

    Article  CAS  Google Scholar 

  154. Niu C et al (2013) Doxorubicin loaded superparamagnetic PLGA-iron oxide multifunctional microbubbles for dual-mode US/MR imaging and therapy of metastasis in lymph nodes. Biomaterials 34(9):2307–2317

    Article  CAS  Google Scholar 

  155. Yang PS et al (2014) A novel bubble-forming material for preparing hydrophobic-agent-loaded bubbles with theranostic functionality. Acta Biomater 10(8):3762–3774

    Article  CAS  Google Scholar 

  156. Coelho SC et al (2015) Supramolecular nanoscale assemblies for cancer diagnosis and therapy. J Controlled Release 213:152–167

    Article  CAS  Google Scholar 

  157. Bobo D et al (2016) Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res 33(10):2373–2387

    Article  CAS  Google Scholar 

  158. Mi P, et al (2017) Molecular cancer imaging with polymeric nanoassemblies: from tumor detection to theranostics. Macromol Biosci 17(1)

    Article  CAS  Google Scholar 

  159. Thakor AS, Gambhir SS (2013) Nanooncology: the future of cancer diagnosis and therapy. CA Cancer J Clin 63(6):395–418

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Rosa Aguilar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Espinosa-Cano, E., Palao-Suay, R., Aguilar, M.R., Vázquez, B., Román, J.S. (2018). Polymeric Nanoparticles for Cancer Therapy and Bioimaging. In: Gonçalves, G., Tobias, G. (eds) Nanooncology. Nanomedicine and Nanotoxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-89878-0_4

Download citation

Publish with us

Policies and ethics