Skip to main content

Quantum Dots for Cancer Therapy and Bioimaging

  • Chapter
  • First Online:
Nanooncology

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

Abstract

Quantum dots (QDs) usually refer to very small nanoparticles of only few nanometers in size. The optical and electronic properties of QDs differ from those of larger particles. QDs will emit light of specific frequencies if electricity or light is applied to them, and these frequencies can be precisely tuned by changing the dots’ size, shape, and material, giving rise to many applications. In this chapter, apart from the most common QDs, e.g., the cadmium (Cd)-containing semiconductor QDs, other types of QDs, including silver chalcogenide quantum dots, carbon quantum dots, silicon quantum dots, black phosphorus quantum dots, germanium quantum dots, and polymer dots are also introduced with an emphasis on their cancer therapy and imaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    Article  CAS  Google Scholar 

  2. Vu TQ, Lam WY, Hatch EW, Lidke DS (2015) Quantum dots for quantitative imaging: from single molecules to tissue. Cell Tissue Res 360:71–86

    Article  CAS  Google Scholar 

  3. Zhou J, Yang Y, Zhang CY (2015) Toward biocompatible semiconductor quantum dots: from biosynthesis and bioconjugation to biomedical application. Chem Rev 115:11669–11717

    Article  CAS  Google Scholar 

  4. Roy M, Niu CJ, Chen YH, McVeigh PZ, Shuhendler AJ, Leung MK, Mariampillai A, DaCosta RS, Wilson BC (2012) Estimation of minimum doses for optimized quantum dot contrast-enhanced vascular imaging in vivo. Small 8:1780–1792

    Article  CAS  Google Scholar 

  5. Zhou RH, Li M, Wang SL, Wu P, Wu L, Hou XD (2014) Low-toxic Mn-doped ZnSe/ZnS quantum dots conjugated with nano-hydroxyapatite for cell imaging. Nanoscale 6:14319–14325

    Article  CAS  Google Scholar 

  6. Wei W, He XW, Ma N (2014) DNA-templated assembly of a heterobivalent quantum dot nanoprobe for extra- and intracellular dual-targeting and imaging of live cancer cells. Angew Chem In Ed 53:5573–5577

    Article  CAS  Google Scholar 

  7. Li ZS, Xu W, Wang YT, Shah BR, Zhang CL, Chen YJ, Li Y, Li B (2015) Quantum dots loaded nanogels for low cytotoxicity, pH-sensitive fluorescence, cell imaging and drug delivery. Carbohydr Polym 121:477–485

    Article  CAS  Google Scholar 

  8. Lee J, Kang HJ, Jang H, Lee YJ, Lee YS, Ali BA, Al-Khedhairy AA, Kim S (2015) Simultaneous imaging of two different cancer biomarkers using aptamer-conjugated quantum dots. Sensors 15:8595–8604

    Article  CAS  Google Scholar 

  9. Sasaki A, Tsukasaki Y, Komatsuzaki A, Sakata T, Yasuda H, Jin T (2015) Recombinant protein (EGFP-protein G)-coated PbS quantum dots for in vitro and in vivo dual fluorescence (visible and second-NIR) imaging of breast tumor. Nanoscale 7:5115–5119

    Article  CAS  Google Scholar 

  10. Sureshkumar S, Jothimani B, Sridhar TM, Venkatachalapathy B (2016) Synthesis and characterization of gadolinium doped ZnSe quantum dots for fluorescence imaging of cancer cells. RSC Adv 6:16081–16086

    Article  CAS  Google Scholar 

  11. Kong YF, Chen J, Fang HW, Heath G, Wo Y, Wang WL, Li YX, Guo Y, Evans SD, Chen SY, Zhou DJ (2016) Highly fluorescent ribonuclease-A-encapsulated lead sulfide quantum dots for ultrasensitive fluorescence in vivo imaging in the second near-infrared window. Chem Mater 28:3041–3050

    Article  CAS  Google Scholar 

  12. Liu J, Lau SK, Varma VA, Moffitt RA, Caldwell M, Liu T, Young AN, Petros JA, Osunkoya AO, Krogstad T, Leyland-Jones B, Wang MD, Nie SM (2010) Molecular mapping of tumor heterogeneity on clinical tissue specimens with multiplexed quantum dots. ACS Nano 4:2755–2765

    Article  CAS  Google Scholar 

  13. Zhang CL, Ji XH, Zhang Y, Zhou GH, Ke XL, Wang HZ, Tinnefeld P, He ZK (2013) One-pot synthesized aptamer-functionalized CdTe: Zn2+ quantum dots for tumor-targeted fluorescence imaging in vitro and in vivo. Anal Chem 85:5843–5849

    Article  CAS  Google Scholar 

  14. Zhang Y, Liu JM, Yan XP (2013) Self-assembly of folate onto polyethyleneimine-coated CdS/ZnS quantum dots for targeted turn-on fluorescence imaging of folate receptor overexpressed cancer cells. Anal Chem 85:228–234

    Article  CAS  Google Scholar 

  15. Wang HN, Sun HF, Wei H, Xi P, Nie SM, Ren QS (2014) Biocompatible hyaluronic acid polymer-coated quantum dots for CD44(+) cancer cell-targeted imaging. J Nanopart Res 16:2621

    Article  CAS  Google Scholar 

  16. Mohammad F, Bwatanglang IB, Yusof NA, Abdullah J, Hussein MZ, Alitheen NB, Abu N (2016) Folic acid targeted Mn: ZnS quantum dots for theranostic applications of cancer cell imaging and therapy. Int J Nanomed 11:413–428

    Article  CAS  Google Scholar 

  17. Li Z, He XW, Luo X, Wang L, Ma N (2016) DNA-programmed quantum dot polymerization for ultrasensitive molecular imaging of cancer cells. Anal Chem 88:9355–9358

    Article  CAS  Google Scholar 

  18. Wang SS, Wen YR, Wang YJ, Ma YY, Liu Z (2017) Pattern recognition of cells via multiplexed imaging with monosaccharide-imprinted quantum dots. Anal Chem 89:5646–5652

    Article  CAS  Google Scholar 

  19. Wichner SM, Mann VR, Powers AS, Segal MA, Mir M, Bandaria JN, DeWitt MA, Darzacq X, Yildiz A, Cohen BE (2017) Covalent protein labeling and improved single-molecule optical properties of aqueous CdSe/CdS quantum dots. ACS Nano 11:6773–6781

    Article  CAS  Google Scholar 

  20. Huang N, Cheng S, Zhang X, Tian Q, Pi JL, Tang J, Huang Q, Wang F, Chen J, Xie ZY, Xu ZY, Chen WF, Zheng HZ, Cheng Y (2017) Efficacy of NGR peptide-modified PEGylated quantum dots for crossing the blood–brain barrier and targeted fluorescence imaging of glioma and tumor vasculature. Nanomedicine 13:83–93

    Article  CAS  Google Scholar 

  21. Au GHT, Mejias L, Swami VK, Brooks AD, Shih WY, Shih WH (2014) Quantitative assessment of Tn antigen in breast tissue micro-arrays using CdSe aqueous quantum dots. Biomaterials 35:2971–2980

    Article  CAS  Google Scholar 

  22. Karamanos Y, Pottiez G (2016) Proteomics and the blood-brain barrier: how recent findings help drug development. Expert Rev Proteomics 13:251–258

    Article  CAS  Google Scholar 

  23. Foda MF, Huang L, Shao F, Han HY (2014) Biocompatible and highly luminescent near-infrared CuInS2/ZnS quantum dots embedded silica beads for cancer cell imaging. ACS Appl Mater Interfaces 6:2011–2017

    Article  CAS  Google Scholar 

  24. He L, Li L, Wang W, Abdel-Halim ES, Zhang J, Zhu JJ (2016) Highly luminescent and biocompatible near-infrared core-shell CdSeTe/CdS/C quantum dots for probe labeling tumor cells. Talanta 146:209–215

    Article  CAS  Google Scholar 

  25. Miyashita M, Gonda K, Tada H, Watanabe M, Kitamura N, Kamei T, Sasano H, Ishida T, Ohuchi N (2016) Quantitative diagnosis of HER2 protein expressing breast cancer by single-particle quantum dot imaging. Cancer Med 5:2813–2824

    Article  CAS  Google Scholar 

  26. Liu XJ, Zhou PJ, Zhan HJ, Liu HY, Zhang JW, Zhao YN (2017) Synthesis and characterization of near-infrared-emitting CdHgTe/CdS/ZnS quantum dots capped by N-acetyl-L-cysteine for in vitro and in vivo imaging. RSC Adv 7:29998–30007

    Article  CAS  Google Scholar 

  27. Benayas A, Ren FQ, Carrasco E, Marzal V, del Rosal B, Gonfa BA, Juarranz A, Sanz-Rodríguez F, Jaque D, García-Solé J, Verone F, Ma DL (2015) PbS/CdS/ZnS quantum dots: a multifunctional platform for in vivo near-infrared low-dose fluorescence imaging. Adv Funct Mater 25:6650–6659

    Article  CAS  Google Scholar 

  28. Ren FQ, del Rosal B, An SY, Yang F, Carrasco E, Benayas A, Oh JK, Jaque D, de la Fuente ÁJ, Verone F, Ma DL (2017) Development and investigation of ultrastable PbS/CdS/ZnS quantum dots for near-infrared tumor imaging. Part Part Syst Charact 34:1600242

    Article  CAS  Google Scholar 

  29. Bruns O, Bischof T, Harris D, Franke D, Shi Y, Riedemann L, Bartelt A, Jaworski F, Carr J, Rowlands C, Wilson M, Chen O, Wei H, Hwang G, Montana D, Coropceanu I, Achorn O, Kloepper J, Heeren J, So P, Fukumura D, Jensen K, Jain R, Bawendi M (2017) Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nature Biomed Eng 1:0056

    Article  Google Scholar 

  30. Ding K, Jing LH, Liu CY, Hou Y, Gao MY (2014) Magnetically engineered Cd-free quantum dots as dual-modality probes for fluorescence/magnetic resonance imaging of tumors. Biomaterials 35:1608–1617

    Article  CAS  Google Scholar 

  31. Wu Q, Chen L, Huang L, Wang J, Liu JW, Hu C, Han HY (2015) Quantum dots decorated gold nanorod as fluorescent-plasmonic dual-modal contrasts agent for cancer imaging. Biosens Bioelectron 74:16–23

    Article  CAS  Google Scholar 

  32. Guo WS, Sun XL, Jacobson O, Yan XF, Min K, Srivatsan A, Niu G, Kiesewetter DO, Chang J, Chang XY (2015) Intrinsically radioactive [64Cu] CuInS/ZnS quantum dots for PET and optical imaging: improved radiochemical stability and controllable cerenkov luminescence. ACS Nano 9:488–495

    Article  CAS  Google Scholar 

  33. Wang JP, Tan XX, Pang XJ, Liu L, Tan FP, Li N (2016) MoS2 quantum dot@polyaniline inorganic-organic nanohybrids for in vivo dual-modal imaging guided synergistic photothermal/radiation therapy. ACS Appl Mater Interfaces 8:24331–24338

    Article  CAS  Google Scholar 

  34. Yang YB, Lin L, Jing LJ, Yue XL, Dai ZF (2017) CuInS2/ZnS quantum dots conjugating Gd(III) chelates for near infrared fluorescence and magnetic resonance bimodal imaging. ACS Appl Mater Interfaces 9:23450–23457

    Article  CAS  Google Scholar 

  35. Lin BB, Yao XZ, Zhu YH, Shen JH, Yang XL, Li CZ (2014) Multifunctional gadolinium-labeled silica-coated core/shell quantum dots for magnetic resonance and fluorescence imaging of cancer cells. RSC Adv 4:20641–20648

    Article  CAS  Google Scholar 

  36. Lai PY, Huang CC, Chou TH, Ou KL, Chang JY (2017) Aqueous synthesis of Ag and Mn co-doped In2S3/ZnS quantum dots with tunable emission for dual-modal targeted imaging. Acta Biomater 50:522–533

    Article  CAS  Google Scholar 

  37. Jing LH, Ding K, Kershaw SV, Kempson IM, Rogach AL, Gao MY (2014) Magnetically engineered semiconductor quantum dots as multimodal imaging probes. Adv Mater 26:6367–6386

    Article  CAS  Google Scholar 

  38. Sitbon G, Bouccara S, Tasso M, Francois A, Bezdetnaya L, Marchal F, Beaumont M, Pons T (2014) Multimodal Mn-doped I–III–VI quantum dots for near infrared fluorescence and magnetic resonance imaging: from synthesis to in vivo application. Nanoscale 6:9264–9272

    Article  CAS  Google Scholar 

  39. Pu KY, Shuhendler AJ, Jokerst JV, Mei JG, Gambhir SS, Bao ZN, Rao JH (2014) Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat Nanotechnol 9:233–239

    Article  CAS  Google Scholar 

  40. Lv GX, Guo WS, Zhang W, Zhang TB, Li SY, Chen SZ, Eltahan AS, Wang DL, Wang YQ, Zhang JC, Wang PC, Chang J, Liang XJ (2016) Near-infrared emission CuInS/ZnS quantum dots: all-in-one theranostic nanomedicines with intrinsic fluorescence/photoacoustic imaging for tumor phototherapy. ACS Nano 10:9637–9645

    Article  CAS  Google Scholar 

  41. Xia HX, Yang XQ, Song JT, Chen J, Zhang MZ, Yan DM, Zhang L, Qin MY, Bai LY, Zhao YD, Ma ZY (2014) Folic acid conjugated silica-coated gold nanorods and quantum dots for dual-modality CT and fluorescence imaging and photothermal therapy. J Mater Chem B 2:1945–1953

    Article  CAS  Google Scholar 

  42. Zhang XD, Xia LY, Chen XK, Chen Z, Wu FG (2017) Hydrogel-based phototherapy for fighting cancer and bacterial infection. Sci China Mater 60:487–503

    Article  CAS  Google Scholar 

  43. Dong HF, Tang SS, Hao YS, Yu HZ, Dai WH, Zhao GF, Cao Y, Lu HT, Zhang XJ, Ju HX (2016) Fluorescent MoS2 quantum dots: ultrasonic preparation, up-conversion and down-conversion bioimaging, and photodynamic therapy. ACS Appl Mater Interfaces 8:3107–3114

    Article  CAS  Google Scholar 

  44. He SJ, Cao J, Li YS, Yang JC, Zhou M, Qu CY, Zhang Y, Shen F, Chen Y, Li MM, Xu LM (2016) CdSe/ZnS quantum dots induce photodynamic effects and cytotoxicity in pancreatic cancer cells. World J Gastroenterol 22:5012–5022

    Article  CAS  Google Scholar 

  45. Sun JJ, Guo YM, Zhu L, Yang L, Shi WK, Wang K, Zhang H (2017) Photodynamic therapy of human hepatoma using semiconductor quantum dots as sole photosensitizer. Part Part Syst Charact 34:1600413

    Article  CAS  Google Scholar 

  46. Yong Y, Cheng XJ, Bao T, Zu M, Yan L, Yin WY, Ge CC, Wang DL, Gu ZJ, Zhao YL (2015) Tungsten sulfide quantum dots as multifunctional nanotheranostics for in vivo dual-modal image-guided photothermal/radiotherapy synergistic therapy. ACS Nano 9:12451–12463

    Article  CAS  Google Scholar 

  47. Chu MQ, Pan XJ, Zhang D, Wu Q, Peng JL, Hai WX (2012) The therapeutic efficacy of CdTe and CdSe quantum dots for photothermal cancer therapy. Biomaterials 33:7071–7083

    Article  CAS  Google Scholar 

  48. Ding DD, Guo W, Guo CS, Sun JZ, Zheng NN, Wang F, Yan M, Liu SQ (2017) MoO3−x quantum dots for photoacoustic imaging guided photothermal/photodynamic cancer treatment. Nanoscale 9:2020–2029

    Article  CAS  Google Scholar 

  49. Hsu CY, Chen CW, Yu HP, Lin YF, Lai PS (2013) Bioluminescence resonance energy transfer using luciferase-immobilized quantum dots for self-illuminated photodynamic therapy. Biomaterials 34:1204–1212

    Article  CAS  Google Scholar 

  50. Tsay JM, Trzoss M, Shi LX, Kong XX, Selke M, Jung ME, Weiss S (2007) Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates. J Am Chem Soc 129:6865–6871

    Article  CAS  Google Scholar 

  51. Martynenko IV, KuznetsovaVA, Orlova AO, Kanaev PA, Maslov VG, Loudon A, Zaharov V, Parfenov P, Gun’ko YK, Baranov AV, Fedorov AV (2015) Chlorin e6–ZnSe/ZnS quantum dots based system as reagent for photodynamic therapy. Nanotechnology 26:055102

    Article  CAS  Google Scholar 

  52. Qi ZD, Li DW, Jiang P, Jiang FL, Li YS, Liu Y, Wong WK, Cheah KW (2011) Biocompatible CdSe quantum dot-based photosensitizer under two-photon excitation for photodynamic therapy. J Mater Chem 21:2455–2458

    Article  CAS  Google Scholar 

  53. Fowley C, Nomikou N, McHale AP, McCarron PA, McCaughan B, Callan JF (2012) Water soluble quantum dots as hydrophilic carriers and two-photon excited energy donors in photodynamic therapy. J Mater Chem 22:6456–6462

    Article  CAS  Google Scholar 

  54. Chou KL, Won N, Kwag J, Kim S, Chen JY (2013) Femto-second laser beam with a low power density achieved a two-photon photodynamic cancer therapy with quantum dots. J Mater Chem B 1:4584–4592

    Article  CAS  Google Scholar 

  55. Zhou YY, Shi LX, Li QN, Jiang H, Lv G, Zhao J, Wu CH, Selke M, Wang XM (2010) Imaging and inhibition of multi-drug resistance in cancer cells via specific association with negatively charged CdTe quantum dots. Biomaterials 31:4958–4963

    Article  CAS  Google Scholar 

  56. Ye DX, Ma YY, Zhao W, Cao HM, Kong JL, Xiong HM, Möhwald H (2016) ZnO-based nanoplatforms for labeling and treatment of mouse tumors without detectable toxic side effects. ACS Nano 10:4294–4300

    Article  CAS  Google Scholar 

  57. Nair LV, Nagaoka Y, Maekawa T, Sakthikumar D, Jayasre RS (2014) Quantum dot tailored to single wall carbon nanotubes: a multifunctional hybrid nanoconstruct for cellular imaging and targeted photothermal therapy. Small 10:2771–2775

    Article  CAS  Google Scholar 

  58. Hu SH, Chen YW, Hung WT, Chen IW, Chen SY (2012) Quantum-dot-tagged reduced graphene oxide nanocomposites for bright fluorescence bioimaging and photothermal therapy monitored in situ. Adv Mater 24:1748–1754

    Article  CAS  Google Scholar 

  59. Chen G, Zhu JY, Zhang ZL, Zhang W, Ren JG, Wu M, Hong ZY, Lv C, Pang DW, Zhao YF (2015) Transformation of cell-derived microparticles into quantum-dot labeled nanovectors for antitumor siRNA delivery. Angew Chem Int Ed 54:1036–1040

    Article  CAS  Google Scholar 

  60. Kim JH, Noh YW, Heo MB, Cho MY, Lim YT (2012) Multifunctional hybrid nanoconjugates for efficient in vivo delivery of immunomodulating oligonucleotides and enhanced antitumor immunity. Angew Chem Int Ed 51:9670–9673

    Article  CAS  Google Scholar 

  61. Shao D, Zeng QH, Fan Z, Li J, Zhang M, Zhang YL, Li O, Chen L, Kong XG, Zhang H (2012) Monitoring HSV-TK/ganciclovir cancer suicide gene therapy using CdTe/CdS core/shell quantum dots. Biomaterials 33:4336–4344

    Article  CAS  Google Scholar 

  62. Gui RJ, Jin H, Wang ZH, Tan LJ (2015) Recent advances in synthetic methods and applications of colloidal silver chalcogenide quantum dots. Coordin Chem Rev 296:91–124

    Article  CAS  Google Scholar 

  63. Hong GS, Diao S, Antaris AL, Dai HJ (2015) Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem Rev 115:10816–10906

    Article  CAS  Google Scholar 

  64. Jiang P, Zhu CN, Zhang ZL, Tian ZQ, Pang DW (2012) Water-soluble Ag2S quantum dots for near-infrared fluorescence imaging in vivo. Biomaterials 33:5130–5135

    Article  CAS  Google Scholar 

  65. Zhang Y, Hong GS, Zhang YJ, Chen GC, Li F, Dai HJ, Wang QB (2012) Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano 6:3695–3702

    Article  CAS  Google Scholar 

  66. Wang CX, Wang Y, Xu L, Zhang D, Liu MX, Li XW, Sun HC, Lin Q, Yang B (2012) Facile aqueous-phase synthesis of biocompatible and fluorescent Ag2S nanoclusters for bioimaging: tunable photoluminescence from red to near infrared. Small 8:3137–3142

    Article  CAS  Google Scholar 

  67. Hong GS, Robinson JT, Zhang YJ, Diao S, Antaris AL, Wang QB, Dai HJ (2012) In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew Chem Int Ed 51:9818–9821

    Article  CAS  Google Scholar 

  68. Wang Y, Yan XP (2013) Fabrication of vascular endothelial growth factor antibody bioconjugated ultrasmall near-infrared fluorescent Ag2S quantum dots for targeted cancer imaging in vivo. Chem Commun 49:3324–3326

    Article  CAS  Google Scholar 

  69. Zhang Y, Zhang YJ, Hong GS, He W, Zhou K, Yang K, Li F, Chen GC, Liu Z, Dai HJ, Wang QB (2013) Biodistribution, pharmacokinetics and toxicology of Ag2S near-infrared quantum dots in mice. Biomaterials 34:3639–3646

    Article  CAS  Google Scholar 

  70. Tan LJ, Wan AJ, Li HL (2013) Conjugating S-nitrosothiols with glutathiose stabilized silver sulfide quantum dots for controlled nitric oxide release and near-infrared fluorescence imaging. ACS Appl Mater Interfaces 5:11163–11171

    Article  CAS  Google Scholar 

  71. Tan LJ, Wan AJ, Li HL (2013) Ag2S quantum dots conjugated chitosan nanospheres toward light-triggered nitric oxide release and near-infrared fluorescence imaging. Langmuir 29:15032–15042

    Article  CAS  Google Scholar 

  72. Li CY, Zhang YJ, Wang M, Zhang Y, Chen GC, Li L, Wu DM, Wang QB (2014) In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window. Biomaterials 35:393–400

    Article  CAS  Google Scholar 

  73. Chen GC, Tian F, Zhang Y, Zhang YJ, Li CY, Wang QB (2014) Tracking of transplanted human mesenchymal stem cells in living mice using near-infrared Ag2S quantum dots. Adv Funct Mater 24:2481–2488

    Article  CAS  Google Scholar 

  74. Chen HY, Li BW, Zhang M, Sun K, Wang YR, Peng KR, Ao MD, Guo YR, Gu YQ (2014) Characterization of tumor-targeting Ag2S quantum dots for cancer imaging and therapy in vivo. Nanoscale 6:12580–12590

    Article  CAS  Google Scholar 

  75. Hu F, Li CY, Zhang YJ, Wang M, Wu DM, Wang QB (2015) Real-time in vivo visualization of tumor therapy by a near-infrared-II Ag2S quantum dot-based theranostic nanoplatform. Nano Res. 8:1637–1647

    Article  CAS  Google Scholar 

  76. Tang R, Xue JP, Xu BG, Shen DW, Sudlow GP, Achilefu S (2015) Tunable ultrasmall visible-to-extended near-infrared emitting silver sulfide quantum dots for integrin-targeted cancer imaging. ACS Nano 9:220–230

    Article  CAS  Google Scholar 

  77. Qin MY, Yang XQ, Wang K, Zhang XS, Song JT, Yao MH, Yan DM, Liu B, Zhao YD (2015) In vivo cancer targeting and fluorescence-CT dual-mode imaging with nanoprobes based on silver sulfide quantum dots and iodinated oil. Nanoscale 7:19484–19492

    Article  CAS  Google Scholar 

  78. Li CY, Cao LM, Zhang YJ, Yi PW, Wang M, Tan B, Deng ZW, Wu DM, Wang QB (2015) Preoperative detection and intraoperative visualization of brain tumors for more precise surgery: a new dual-modality MRI and NIR nanoprobe. Small 11:4517–4525

    Article  CAS  Google Scholar 

  79. Chen GC, Tian F, Li CY, Zhang YJ, Weng Z, Zhang Y, Peng R, Wang QB (2015) In vivo real-time visualization of mesenchymal stem cells tropism for cutaneous regeneration using NIR-II fluorescence imaging. Biomaterials 53:265–273

    Article  CAS  Google Scholar 

  80. Li CY, Li F, Zhang YJ, Zhang WJ, Zhang XE, Wang QB (2015) Real-time monitoring surface chemistry-dependent in vivo behaviors of protein nanocages via encapsulating an NIR-II Ag2S quantum dot. ACS Nano 9:12255–12263

    Article  CAS  Google Scholar 

  81. Huang S, Peng S, Li Y, Cui J, Chen H, Wang L (2015) Development of NIR-II fluorescence image-guided and pH-responsive nanocapsules for cocktail drug delivery. Nano Res 8:1932–1943

    Article  CAS  Google Scholar 

  82. Wu CX, Zhang YJ, Li Z, Li CY, Wang QB (2016) A novel photoacoustic nanoprobe of ICG@PEG-Ag2S for atherosclerosis targeting and imaging in vivo. Nanoscale 8:12531–12539

    Article  CAS  Google Scholar 

  83. Zhang J, Hao GY, Yao CF, Yu JN, Wang J, Yang WT, Hu CH, Zhang BB (2016) Albumin-mediated biomineralization of paramagnetic NIR Ag2S QDs for tiny tumor bimodal targeted imaging in vivo. ACS Appl Mater Interfaces 8:16612–16621

    Article  CAS  Google Scholar 

  84. Gao JW, Wu CL, Deng D, Wu P, Cai CX (2016) Direct synthesis of water-soluble aptamer-Ag2S quantum dots at ambient temperature for specific imaging and photothermal therapy of cancer. Adv Healthcare Mater 5:2437–2449

    Article  CAS  Google Scholar 

  85. Yang T, Tang YA, Liu L, Lv XY, Wang QL, Ke HT, Deng YB, Yang H, Yang XL, Liu G, Zhao YL, Chen HB (2017) Size-dependent Ag2S nanodots for second near-infrared fluorescence/photoacoustics imaging and simultaneous photothermal therapy. ACS Nano 11:1848–1857

    Article  CAS  Google Scholar 

  86. Li CY, Zhang YJ, Chen GC, Hu F, Zhao K, Wang QB (2017) Engineered multifunctional nanomedicine for simultaneous stereotactic chemotherapy and inhibited osteolysis in an orthotopic model of bone metastasis. Adv Mater 29:1605754

    Article  CAS  Google Scholar 

  87. Gu YP, Cui R, Zhang ZL, Xie ZX, Pang DW (2012) Ultrasmall near-infrared Ag2Se quantum dots with tunable fluorescence for in vivo imaging. J Am Chem Soc 134:79–82

    Article  CAS  Google Scholar 

  88. Dong BH, Li CY, Chen GC, Zhang YJ, Zhang Y, Deng MJ, Wang QB (2013) Facile synthesis of highly photoluminescent Ag2Se quantum dots as a new fluorescent probe in the second near-infrared window for in vivo imaging. Chem Mater 25:2503–2509

    Article  CAS  Google Scholar 

  89. Tang H, Yang ST, Yang YF, Ke DM, Liu JH, Chen X, Wang H, Liu Y (2016) Blood clearance, distribution, transformation, excretion, and toxicity of near-infrared quantum dots Ag2Se in mice. ACS Appl Mater Interfaces 8:17859–17869

    Article  CAS  Google Scholar 

  90. Zhao JY, Chen G, Gu YP, Cui R, Zhang ZL, Yu ZL, Tang B, Zhao YF, Pang DW (2016) Ultrasmall magnetically engineered Ag2Se quantum dots for instant efficient labeling and whole-body high-resolution multimodal real-time tracking of cell-derived microvesicles. J Am Chem Soc 138:1893–1903

    Article  CAS  Google Scholar 

  91. Yu ZL, Zhang W, Zhao JY, Zhong WQ, Ren JG, Wu M, Zhang ZL, Pang DW, Zhao YF, Chen G (2017) Development of a dual-modally traceable nanoplatform for cancer theranostics using natural circulating cell-derived microparticles in oral cancer patients. Adv Funct Mater 27:1703482

    Article  CAS  Google Scholar 

  92. Zhu CN, Chen G, Tian ZQ, Wang W, Zhong WQ, Li Z, Zhang ZL, Pang DW (2017) Near-infrared fluorescent Ag2Se-cetuximab nanoprobes for targeted imaging and therapy of cancer. Small 13:1602309

    Article  CAS  Google Scholar 

  93. Yarema M, Pichler S, Sytnyk M, Seyrkammer R, Lechner RT, Fritz-Popovski G, Jarzab D, Szendrei K, Resel R, Korovyanko O, Loi MA, Paris O, Hesser G, Heiss W (2011) Infrared emitting and photoconducting colloidal silver chalcogenide nanocrystal quantum dots from a silylamide-promoted synthesis. ACS Nano 5:3758–3765

    Article  CAS  Google Scholar 

  94. Chen C, He XW, Gao L, Ma N (2013) Cation exchange-based facile aqueous synthesis of small, stable, and nontoxic near-infrared Ag2Te/ZnS core/shell quantum dots emitting in the second biological window. ACS Appl Mater Interfaces 5:1149–1155

    Article  CAS  Google Scholar 

  95. Yang M, Gui RJ, Jin H, Wang ZH, Zhang FF, Xia JF, Bi S, Xia YZ (2015) Ag2Te quantum dots with compact surface coatings of multivalent polymers: ambient one-pot aqueous synthesis and the second near-infrared bioimaging. Colloids Surf B: Biointerfaces 126:115–120

    Article  CAS  Google Scholar 

  96. Xu XY, Ray R, Gu YL, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736–12737

    Article  CAS  Google Scholar 

  97. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49:6726–6744

    Article  CAS  Google Scholar 

  98. Hill S, Galan MC (2017) Fluorescent carbon dots from mono- and polysaccharides: synthesis, properties and applications. Beilstein J Org Chem 13:675–693

    Article  CAS  Google Scholar 

  99. Hua XW, Bao YW, Wang HY, Chen Z, Wu FG (2017) Bacteria-derived fluorescent carbon dots for microbial live/dead differentiation. Nanoscale 9:2150–2161

    Article  CAS  Google Scholar 

  100. Yang JJ, Zhang XD, Ma YH, Gao G, Chen XK, Jia HR, Li YH, Chen Z, Wu FG (2016) Carbon dot-based platform for simultaneous bacterial distinguishment and antibacterial applications. ACS Appl Mater Interfaces 8:32170–32181

    Article  CAS  Google Scholar 

  101. Zheng XT, Ananthanarayanan A, Luo KQ, Chen P (2015) Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11:1620–1636

    Article  CAS  Google Scholar 

  102. Lim SY, Shen W, Gao ZQ (2015) Carbon quantum dots and their applications. Chem Soc Rev 44:362–381

    Article  CAS  Google Scholar 

  103. Du Y, Guo SJ (2016) Chemically doped fluorescent carbon and graphene quantum dots for bioimaging, sensor, catalytic and photoelectronic applications. Nanoscale 8:2532–2543

    Article  CAS  Google Scholar 

  104. Wang R, Lu KQ, Tang ZR, Xu YJ (2017) Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis. J Mater Chem A 5:3717–3734

    Article  CAS  Google Scholar 

  105. Zuo PL, Lu XH, Sun ZG, Guo YH, He H (2016) A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim Acta 183:519–542

    Article  CAS  Google Scholar 

  106. Wang JL, Qiu JJ (2016) A review of carbon dots in biological applications. J Mater Sci 51:4728–4738

    Article  CAS  Google Scholar 

  107. Namdari P, Negahdari B, Eatemadi A (2017) Synthesis, properties and biomedical applications of carbon-based quantum dots: an updated review. Biomed Pharmacother 87:209–222

    Article  CAS  Google Scholar 

  108. Jaleel JA, Pramod K (2018) Artful and multifaceted applications of carbon dot in biomedicine. J Control Release 269:302–321

    Article  CAS  Google Scholar 

  109. Yuan FL, Li SH, Fan ZT, Meng XY, Fan LZ, Yang SH (2016) Shining carbon dots: synthesis and biomedical and optoelectronic applications. Nano Today 11:565–586

    Article  CAS  Google Scholar 

  110. Jiang K, Sun S, Zhang L, Lu Y, Wu AG, Cai CZ, Lin HW (2015) Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. Angew Chem Int Ed 54:5360–5363

    Article  CAS  Google Scholar 

  111. Ding H, Yu SB, Wei JS, Xiong HM (2016) Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10:484–491

    Article  CAS  Google Scholar 

  112. Shi HT, Wei JF, Qiang L, Chen X, Meng XW (2014) Fluorescent carbon dots for bioimaging and biosensing applications. J Biomed Nanotechnol 10:2677–2699

    Article  CAS  Google Scholar 

  113. Sun YP, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang HF, Luo PG, Yang H, Kose ME, Chen BL, Veca LM, Xie SY (2006) Quantum-Sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128:7756–7757

    Article  CAS  Google Scholar 

  114. Hola K, Zhang Y, Wang Y, Giannelis EP, Zboril R, Rogach AL (2014) Carbon dots—emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today 9:590–603

    Article  CAS  Google Scholar 

  115. Luo PG, Yang F, Yang ST, Sonkar SK, Yang LJ, Broglie JJ, Liu Y, Sun YP (2014) Carbon-based quantum dots for fluorescence imaging of cells and tissues. RSC Adv 4:10791–10807

    Article  CAS  Google Scholar 

  116. Gao G, Jiang YW, Jia HR, Yang JJ, Wu FG (2018) On-off-on fluorescent nanosensor for Fe3+ detection and cancer/normal cell differentiation via silicon-doped carbon quantum dots. Carbon 134:232–243

    Article  CAS  Google Scholar 

  117. Zhang Z, Hao JH, Zhang J, Zhang BL, Tang JL (2012) Protein as the source for synthesizing fluorescent carbon dots by a one-pot hydrothermal route. RSC Adv 2:8599–8601

    Article  CAS  Google Scholar 

  118. Hua XW, Bao YW, Wu FG (2018) Fluorescent carbon quantum dots with intrinsic nucleolus-targeting capability for nucleolus imaging and enhanced cytosolic and nuclear drug delivery. ACS Appl Mater Interfaces 10:10664–10677

    Google Scholar 

  119. Cao L, Wang X, Meziani MJ, Lu FS, Wang HF, Luo PG, Lin Y, Harruff BA, Veca LM, Murray D, Xie SY, Sun YP (2007) Carbon dots for multiphoton bioimaging. J Am Chem Soc 129:11318–11319

    Article  CAS  Google Scholar 

  120. Chizhik AM, Stein S, Dekaliuk MO, Battle C, Li WX, Huss A, Platen M, Schaap IAT, Gregor I, Demchenko AP, Schmidt CF, Enderlein J, Chizhik AI (2016) Super-resolution optical fluctuation bio-imaging with dual-color carbon nanodots. Nano Lett 16:237–242

    Article  CAS  Google Scholar 

  121. Yang XD, Wang Y, Shen XR, Su CY, Yang JH, Piao MJ, Jia F, Gao GH, Zhang L, Lin Q (2017) One-step synthesis of photoluminescent carbon dots with excitation-independent emission for selective bioimaging and gene delivery. J Colloid Interface Sci 492:1–7

    Article  CAS  Google Scholar 

  122. Lu SY, Shi LZ, Liu JJ, Zhu SJ, Chen AM, Jin MX, Yang B (2017) Near-infrared photoluminescent polymer-carbon nanodots with two-photon fluorescence. Adv Mater 29:1603443

    Article  CAS  Google Scholar 

  123. Ge JC, Jia QY, Liu WM, Guo L, Liu QY, Lan MH, Zhang HY, Meng XM, Wang PF (2015) Red-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice. Adv Mater 27:4169–4177

    Article  CAS  Google Scholar 

  124. Choi Y, Kim S, Choi MH, Ryoo SR, Park J, Min DH, Kim BS (2014) Highly biocompatible carbon nanodots for simultaneous bioimaging and targeted photodynamic therapy in vitro and in vivo. Adv Funct Mater 24:5781–5789

    Article  CAS  Google Scholar 

  125. Gong XJ, Zhang QY, Gao YF, Shuang SM, Choi MMF, Dong C (2016) Phosphorus and nitrogen dual-doped hollow carbon dot as a nanocarrier for doxorubicin delivery and biological imaging. ACS Appl Mater Interfaces 8:11288–11297

    Article  CAS  Google Scholar 

  126. Yang JJ, Gao G, Zhang XD, Ma YH, Jia HR, Jiang YW, Wang ZF, Wu FG (2017) Ultrasmall and photostable nanotheranostic agents based on carbon quantum dots passivated with polyamine-containing organosilane molecules. Nanoscale 9:15441–15452

    Article  CAS  Google Scholar 

  127. Hua XW, Bao YW, Chen Z, Wu FG (2017) Carbon quantum dots with intrinsic mitochondrial targeting ability for mitochondria-based theranostics. Nanoscale 9:10948–10960

    Article  CAS  Google Scholar 

  128. Zheng M, Liu S, Li J, Qu D, Zhao HF, Guan XG, Hu XL, Xie ZG, Jing XB, Sun ZC (2014) Integrating oxaliplatin with highly luminescent carbon dots: an unprecedented theranostic agent for personalized medicine. Adv Mater 26:3554–3560

    Article  CAS  Google Scholar 

  129. Huang P, Lin J, Wang XS, Wang Z, Zhang CL, He M, Wang K, Chen F, Li ZM, Shen GX, Cui DX, Chen XY (2012) Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Adv Mater 24:5104–5110

    Article  CAS  Google Scholar 

  130. Wang H, Di J, Sun YB, Fu JP, Wei ZY, Matsui H, Alonso A. del C, Zhou SQ (2015) Biocompatible PEG-Chitosan@Carbon dots hybrid nanogels for two-photon fluorescence imaging, near-infrared light/pH dual-responsive drug carrier, and synergistic therapy. Adv Funct Mater 25:5537–5547

    Article  CAS  Google Scholar 

  131. Feng T, Ai XZ, An GH, Yang PP, Zhao YL (2016) Charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency. ACS Nano 10:4410–4420

    Article  CAS  Google Scholar 

  132. Feng T, Ai XZ, Ong HM, Zhao YL (2016) Dual-responsive carbon dots for tumor extracellular microenvironment triggered targeting and enhanced anticancer drug delivery. ACS Appl Mater Interfaces 8:18732–18740

    Article  CAS  Google Scholar 

  133. Zhao QF, Wang SY, Yang Y, Li X, Di DH, Zhang CG, Jiang TY, Wang SL (2017) Hyaluronic acid and carbon dots-gated hollow mesoporous silica for redox and enzyme-triggered targeted drug delivery and bioimaging. Mater Sci Eng, C 78:475–484

    Article  CAS  Google Scholar 

  134. Christensen IL, Sun YP, Juzenas P (2011) Carbon dots as antioxidants and prooxidants. J Biomed Nanotechnol 7:667–676

    Article  CAS  Google Scholar 

  135. Hsu PC, Chen PC, Ou CM, Chang HY, Chang HT (2013) Extremely high inhibition activity of photoluminescent carbon nanodots toward cancer cells. J Mater Chem B 1:1774–1781

    Article  CAS  Google Scholar 

  136. Ge JC, Jia QY, Liu WM, Lan MH, Zhou BJ, Guo L, Zhou HY, Zhang HY, Wang Y, Gu Y, Meng XM, Wang PF (2016) Carbon dots with intrinsic theranostic properties for bioimaging, red-light-triggered photodynamic/photothermal simultaneous therapy in vitro and in vivo. Adv Healthcare Mater 5:665–675

    Article  CAS  Google Scholar 

  137. Lan MH, Zhao SJ, Zhang ZY, Yan L, Guo L, Niu GL, Zhang JF, Zhao JF, Zhang HY, Wang PF, Zhu GY, Lee CS, Zhang WJ (2017) Two-photon-excited near-infrared emissive carbon dots as multifunctional agents for fluorescence imaging and photothermal therapy. Nano Res 10:3113–3123

    Article  CAS  Google Scholar 

  138. Zheng M, Li Y, Liu S, Wang WQ, Xie ZG, Jing XB (2016) One-pot to synthesize multifunctional carbon dots for near infrared fluorescence imaging and photothermal cancer therapy. ACS Appl Mater Interfaces 8:23533–23541

    Article  CAS  Google Scholar 

  139. Jia QY, Ge JC, Liu WM, Guo L, Zheng XL, Chen SQ, Chen MX, Liu S, Zhang LP, Wang MQ, Zhang HY, Wang PF (2017) Self-Assembled carbon dot nanosphere: a robust, near-infrared light-responsive, and vein injectable photosensitizer. Adv Healthcare Mater 6:1601419

    Article  CAS  Google Scholar 

  140. Allen JE, Hemesath ER, Perea DE, Lensch-falk JL, Li ZY, Yin F, Gass MH, Wang P, Bleloch AL, Palmer RE, Lauhon LJ (2008) High-resolution detection of au catalyst atoms in si nanowires. Nat Nanotechnol 3:168–173

    Article  CAS  Google Scholar 

  141. Grom GF, Lockwood DJ, McCaffrey JP, Labbé HJ, Fauchet PM, White B Jr, Diener J, Kovalev D, Koch F, Tsybeskov L (2000) Ordering and self-organization in nanocrystalline silicon. Nature 407:358–361

    Article  CAS  Google Scholar 

  142. Fan JG, Tang XJ, Zhao YP (2004) Water contact angles of vertically aligned Si nanorod arrays. Nanotechnology 15:501–504

    Article  CAS  Google Scholar 

  143. Schmidt V, Wittemann JV, Senz S, Gösele U (2009) Silicon nanowires: a review on aspects of their growth and their electrical properties. Adv Mater 21:2681–2702

    Article  CAS  Google Scholar 

  144. Chen XK, Zhang XD, Xia LY, Wang HY, Chen Z, Wu FG (2018) One-step synthesis of ultrasmall and ultrabright organosilica nanodots with 100% photoluminescence quantum yield: long-term lysosome imaging in living, fixed, and permeabilized cells. Nano Lett 18:1159−1167.

    Article  CAS  Google Scholar 

  145. Warner JH, Hoshino A, Yamamoto K, Tilley RD (2005) Water-soluble photoluminescent silicon quantum dots. Angew Chem Int Ed 44:4550–4554

    Article  CAS  Google Scholar 

  146. Erogbogbo F, Yong KT, Roy I, Xu GX, Prasad PN, Swihart MT (2008) Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano 2:873–878

    Article  CAS  Google Scholar 

  147. He Y, Kang ZH, Li QS, Tsang CHA, Fan CH, Lee ST (2009) Ultrastable, highly fluorescent, and water-dispersed silicon-based nanospheres as cellular probes. Angew Chem Int Ed 48:128–132

    Article  CAS  Google Scholar 

  148. He Y, Su YY, Yang XB, Kang ZH, Xu TT, Zhang RQ, Fan CH, Lee ST (2009) Photo and pH stable, highly-luminescent silicon nanospheres and their bioconjugates for immunofluorescent cell imaging. J Am Chem Soc 131:4434–4438

    Article  CAS  Google Scholar 

  149. Tu CC, Awasthi K, Chen KP, Lin CH, Hamada M, Ohta N, Li YK (2017) Time-gated imaging on live cancer cells using silicon quantum dot nanoparticles with long-lived fluorescence. ACS Photonics 4:1306–1315

    Article  CAS  Google Scholar 

  150. Erogbogbo F, Tien CA, Chang CW, Yong KT, Law WC, Ding H, Roy I, Swihart MT, Prasad PN (2011) Bioconjugation of luminescent silicon quantum dots for selective uptake by cancer cells. Bioconjugate Chem 22:1081–1088

    Article  CAS  Google Scholar 

  151. Klein S, Zolk O, Fromm MF, Schrödl F, Neuhuber W, Kryschi C (2009) Functionalized silicon quantum dots tailored for targeted sirna delivery. Biochem Biophys Res Commun 387:164–168

    Article  CAS  Google Scholar 

  152. Ruizendaal L, Bhattacharjee S, Pournazari K, Rosso-Vasic M, de Haan LHJ, Alink GM (2009) Synthesis and cytotoxicity of silicon nanoparticles with covalently attached organic monolayers. Nanotoxicology 3:339–347

    Article  CAS  Google Scholar 

  153. Xu ZG, Wang DD, Guan M, Liu XY, Yang YJ, Wei DF (2012) Photoluminescent silicon nanocrystal-based multifunctional carrier for ph-regulated drug delivery. ACS Appl Mater Interfaces 4:3424–3431

    Article  CAS  Google Scholar 

  154. Wang Q, Bao YP, Ahire J, Chao YM (2013) Co-encapsulation of biodegradable nanoparticles with silicon quantum dots and quercetin for monitored delivery. Adv Healthcare Mater 2:459–466

    Article  CAS  Google Scholar 

  155. Ji XY, Peng F, Zhong YL, Su YY, Jiang XX, Song CX, Yang L, Chu BB, Lee ST, He Y (2015) Highly fluorescent, photostable, and ultrasmall silicon drug nanocarriers for long-term tumor cell tracking and in-vivo cancer therapy. Adv Mater 27:1029–1034

    Article  CAS  Google Scholar 

  156. Liu JJ, Chang Q, Bao MM, Yuan B, Yang K, Ma YQ (2017) Silicon quantum dots delivered phthalocyanine for fluorescence guided photodynamic therapy of tumor. Chin Phys B 26:098102

    Article  Google Scholar 

  157. Qiao JS, Kong XH, Hu ZX, Yang F, Ji W (2014) High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun 5:4475

    Article  CAS  Google Scholar 

  158. Wu JX, Mao NN, Xie LM, Xu H, Zhang J (2015) Identifying the crystalline orientation of black phosphorus using angle-resolved polarized raman spectroscopy. Angew Chem Int Ed 54:2366–2369

    Article  CAS  Google Scholar 

  159. Wang H, Yang XZ, Shao W, Chen SC, Xie JF, Zhang XD, Wang J, Xie Y (2015) Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation. J Am Chem Soc 137:11376–11382

    Article  CAS  Google Scholar 

  160. Sun ZB, Xie HH, Tang SY, Yu XF, Guo ZN, Shao JD, Zhang H, Huang H, Wang HY, Chu PK (2015) Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents. Angew Chem Int Ed 54:11526–11530

    Article  CAS  Google Scholar 

  161. Zhang X, Xie HM, Liu ZD, Tan CL, Luo ZM, Li H, Lin JD, Sun LQ, Chen W, Xu ZC, Xie LH, Huang W, Zhang H (2015) Black phosphorus quantum dots. Angew Chem Int Ed 54:3653–3657

    Article  CAS  Google Scholar 

  162. Xu YH, Wang ZT, Guo ZN, Huang H, Xiao QL, Zhang H, Yu XF (2016) Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots. Adv. Opt. Mater. 4:1223–1229

    Article  CAS  Google Scholar 

  163. Gao LF, Xu JY, Zhu ZY, Hu CX, Zhang L, Wang Q, Zhang HL (2016) Small molecule-assisted fabrication of black phosphorus quantum dots with a broadband nonlinear optical response. Nanoscale 8:15132–15136

    Article  CAS  Google Scholar 

  164. Lee HU, Park SY, Lee SC, Choi S, Seo S, Kim H, Won J, Choi K, Kang KS, Park HG, Kim HS, An HR, Jeong KH, Lee YC, Lee J (2016) Black phosphorus (BP) nanodots for potential biomedical applications. Small 12:214–219

    Article  CAS  Google Scholar 

  165. Ling X, Wang H, Huang SX, Xia FN, Dresselhaus MS (2015) The renaissance of black phosphorus. Proc Natl Acad Sci U S A 112:4523–4530

    Article  CAS  Google Scholar 

  166. Gu W, Yan YH, Pei XY, Zhang CL, Ding CP, Xian YZ (2017) Fluorescent black phosphorus quantum dots as label-free sensing probes for evaluation of acetylcholinesterase activity. Sens Actuator B-Chem 250:601–607

    Article  CAS  Google Scholar 

  167. Shao JD, Xie HH, Huang H, Li ZB, Sun ZB, Xu YH, Xiao QL, Yu XF, Zhao YT, Zhang H, Wang HY, Chu PK (2016) Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat Commun 7:12967

    Article  CAS  Google Scholar 

  168. Hayashi S, Ito M, Kanamori H (1982) Raman study of gas-evaporated germanium microcrystals. Solid State Commun 44:75–79

    Article  CAS  Google Scholar 

  169. Carolan D (2017) Recent advances in germanium nanocrystals: synthesis, optical properties and applications. Prog Mater Sci 90:128–158

    Article  CAS  Google Scholar 

  170. Reiss P, Carrière M, Lincheneau C, Vaure L, Tamang S (2016) Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials. Chem Rev 116:10731–10819

    Article  CAS  Google Scholar 

  171. Lambert TN, Andrews NL, Gerung H, Boyle TJ, Oliver JM, Wilson BS, Han SM (2007) Water-soluble germanium(0) nanocrystals: cell recognition and near-infrared photothermal conversion properties. Small 3:691–699

    Article  CAS  Google Scholar 

  172. Li F, Wang J, Sun SQ, Wang H, Tang ZY, Nie GJ (2015) Facile synthesis of ph-sensitive germanium nanocrystals with high quantum yield for intracellular acidic compartment imaging. Small 11:1954–1961

    Article  CAS  Google Scholar 

  173. Karatutlu A, Song MY, Wheeler AP, Ersoy O, Little WR, Zhang YP, Puech P, Boi FS, Luklinska Z, Sapelkin AV (2015) Synthesis and structure of free-standing germanium quantum dots and their application in live cell imaging. RSC Adv 5:20566–20573

    Article  CAS  Google Scholar 

  174. Wu CF, Chiu DT (2013) Highly fluorescent semiconducting polymer dots for biology and medicine. Angew Chem Int Ed 52:3086–3109

    Article  CAS  Google Scholar 

  175. Wu CF, Szymanski C, Cain Z, McNeill J (2007) Conjugated polymer dots for multiphoton fluorescence imaging. J Am Chem Soc 129:12904–12905

    Article  CAS  Google Scholar 

  176. Yu JB, Wu CF, Sahu SP, Fernando LP, Szymanski C, McNeill J (2009) Nanoscale 3D tracking with conjugated polymer nanoparticles. J Am Chem Soc 131:18410–18414

    Article  CAS  Google Scholar 

  177. Wu CF, Schneider T, Zeigler M, Yu JB, Schiro PG, Burnham DR, McNeill JD, Chiu DT (2010) Bioconjugation of ultrabright semiconducting polymer dots for specific cellular targeting. J Am Chem Soc 132:15410–15417

    Article  CAS  Google Scholar 

  178. Wu CF, Jin YH, Schneider T, Burnham DR, Smith PB, Chiu DT (2010) Ultrabright and bioorthogonal labeling of cellular targets using semiconducting polymer dots and click chemistry. Angew Chem Int Ed 49:9436–9440

    Article  CAS  Google Scholar 

  179. Sun C, Zhang Y, Sun K, Reckmeier C, Zhang TQ, Zhang XY, Zhao J, Wu CF, Yu WW, Rogach AL (2015) Combination of carbon dot and polymer dot phosphors for white light-emitting diodes. Nanoscale 7:12045–12050

    Article  CAS  Google Scholar 

  180. Wu CF, Bull B, Szymanski C, Christensen K, McNeill J (2008) Multicolor conjugated polymer dots for biological fluorescence imaging. ACS Nano 2:2415–2423

    Article  CAS  Google Scholar 

  181. Ye FM, Wu CF, Jin YH, Wang M, Chan YH, Yu JB, Sun W, Hayden S, Chiu DT (2012) A compact and highly fluorescent orange-emitting polymer dot for specific subcellular imaging. Chem Commun 48:1778–1780

    Article  CAS  Google Scholar 

  182. Li Q, Zhang JN, Sun W, Yu JB, Wu CF, Qin WP, Chiu DT (2014) Europium-complex-grafted polymer dots for amplified quenching and cellular imaging applications. Langmuir 30:8607–8614

    Article  CAS  Google Scholar 

  183. Chan YH, Ye FM, Gallina ME, Zhang XJ, Jin YH, Wu IC, Chiu DT (2012) Hybrid semiconducting polymer dot–quantum dot with narrowband emission, near-infrared fluorescence, and high brightness. J Am Chem Soc 134:7309–7312

    Article  CAS  Google Scholar 

  184. Chan YH, Wu CF, Ye FM, Jin YH, Smith PB, Chiu DT (2011) Development of ultrabright semiconducting polymer dots for ratiometric ph sensing. Anal Chem 83:1448–1455

    Article  CAS  Google Scholar 

  185. Ye FM, Wu CF, Jin YH, Chan YH, Zhang XJ, Chiu DT (2011) Ratiometric temperature sensing with semiconducting polymer dots. J Am Chem Soc 133:8146–8149

    Article  CAS  Google Scholar 

  186. Wu CF, Bull B, Christensen K, McNeill J (2009) Ratiometric single-nanoparticle oxygen sensors for biological imaging. Angew Chem Int Ed 48:2741–2745

    Article  CAS  Google Scholar 

  187. Sun K, Tang Y, Li Q, Yin SY, Qin WP, Yu JB, Chiu DT, Liu YB, Yuan Z, Zhang XJ, Wu CF (2016) In vivo dynamic monitoring of small molecules with implantable polymer-dot transducer. ACS Nano 10:6769–6781

    Article  CAS  Google Scholar 

  188. Yu JB, Wu CF, Tian ZY, McNeill J (2012) Tracking of single charge carriers in a conjugated polymer nanoparticle. Nano Lett 12:1300–1306

    Article  CAS  Google Scholar 

  189. Zhang XJ, Yu JB, Wu CF, Jin YH, Rong Y, Ye FM, Chiu DT (2012) Importance of having low-density functional groups for generating high-performance semiconducting polymer dots. ACS Nano 6:5429–5439

    Article  CAS  Google Scholar 

  190. Geng JL, Liu J, Liang J, Shi HB, Liu B (2013) A general approach to prepare conjugated polymer dot embedded silica nanoparticles with a SiO2@CP@SiO2 structure for targeted HER2-positive cellular imaging. Nanoscale 5:8593–8601

    Article  CAS  Google Scholar 

  191. Chang KW, Liu ZH, Fang XF, Chen HB, Men XJ, Yuan Y, Sun K, Zhang XJ, Yuan Z, Wu CF (2017) Enhanced phototherapy by nanoparticle-enzyme via generation and photolysis of hydrogen peroxide. Nano Lett 17:4323–4329

    Article  CAS  Google Scholar 

  192. Wu CF, Hansen SJ, Hou Q, Yu JB, Zeigler M, Jin YH, Burnham DR, McNeill JD, Olson JM, Chiu DT (2011) Design of highly emissive polymer dot bioconjugates for in vivo tumor targeting. Angew Chem Int Ed 50:3430–3434

    Article  CAS  Google Scholar 

  193. Wu IC, Yu JB, Ye FM, Rong Y, Gallina ME, Fujimoto BS, Zhang Y, Chan YH, Sun W, Zhou XH, Wu CF, Chiu DT (2015) Squaraine-based polymer dots with narrow, bright near-infrared fluorescence for biological applications. J Am Chem Soc 137:173–178

    Article  CAS  Google Scholar 

  194. Jia HR, Jiang YW, Zhu YX, Li YH, Wang HY, Han XF, Yu ZW, Gu N, Liu PD, Chen Z, Wu FG (2017) Plasma membrane activatable polymeric nanotheranostics with self-enhanced light-triggered photosensitizer cellular influx for photodynamic cancer therapy. J Control Release 255:231–241

    Article  CAS  Google Scholar 

  195. Zhu YX, Jia HR, Chen Z, Wu FG (2017) Photosensitizer (PS)/polyhedral oligomeric silsesquioxane (poss)-crosslinked nanohybrids for enhanced imaging-guided photodynamic cancer therapy. Nanoscale 9:12874–12884

    Article  CAS  Google Scholar 

  196. Tang Y, Chen HB, Chang KW, Liu ZH, Wang Y, Qu SN, Xu H, Wu CF (2017) Photo-cross-linkable polymer dots with stable sensitizer loading and amplified singlet oxygen generation for photodynamic therapy. ACS Appl Mater Interfaces 9:3419–3431

    Article  CAS  Google Scholar 

  197. Li SY, Chang KW, Sun K, Tang Y, Cui N, Wang Y, Qin WP, Xu H, Wu CF (2016) Amplified singlet oxygen generation in semiconductor polymer dots for photodynamic cancer therapy. ACS Appl Mater Interfaces 8:3624–3634

    Article  CAS  Google Scholar 

  198. Zhang YR, Pang L, Ma C, Tu Q, Zhang R, Saeed E, Mahmoud AE, Wang JY (2014) Small molecule-initiated light-activated semiconducting polymer dots: an integrated nanoplatform for targeted photodynamic therapy and imaging of cancer cells. Anal Chem 86:3092–3099

    Article  CAS  Google Scholar 

  199. Chang KW, Tang Y, Fang XF, Yin SY, Xu H, Wu CF (2016) Incorporation of porphyrin to π-conjugated backbone for polymer-dot-sensitized photodynamic therapy. Biomacromol 17:2128–2136

    Article  CAS  Google Scholar 

  200. Shi HF, Ma X, Zhao Q, Liu B, Qu QY, An ZF, Zhao YL, Huang W (2014) Ultrasmall phosphorescent polymer dots for ratiometric oxygen sensing and photodynamic cancer therapy. Adv Funct Mater 24:4823–4830

    Article  CAS  Google Scholar 

  201. Zhu SJ, Song YB, Shao JR, Zhao XH, Yang B (2015) Non-conjugated polymer dots with crosslink-enhanced emission in the absence of fluorophore units. Angew Chem Int Ed 54:14626–14637

    Article  CAS  Google Scholar 

  202. Zhu SJ, Wang L, Zhou N, Zhao XH, Song YB, Maharjan S, Zhang JH, Lu LJ, Wang HY, Yang B (2014) The crosslink enhanced emission (CEE) in non-conjugated polymer dots: from the photoluminescence mechanism to the cellular uptake mechanism and internalization. Chem Commun 50:13845–13848

    Article  CAS  Google Scholar 

  203. Sun Y, Cao WP, Li SL, Jin SB, Hu KL, Hu LM, Huang YY, Gao XY, Wu Y, Liang XJ (2013) Ultrabright and multicolorful fluorescence of amphiphilic polyethyleneimine polymer dots for efficiently combined imaging and therapy. Sci Rep 3:3036

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Gen Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, FG. et al. (2018). Quantum Dots for Cancer Therapy and Bioimaging. In: Gonçalves, G., Tobias, G. (eds) Nanooncology. Nanomedicine and Nanotoxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-89878-0_3

Download citation

Publish with us

Policies and ethics