Skip to main content
Book cover

Nanooncology pp 387–415Cite as

Fullerenes for Cancer Therapy and Bioimaging

  • Chapter
  • First Online:

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

Abstract

Chemical derivatives of fullerene and endohedral metallofullerenes (EMFs) not only keep some of the physicochemical properties of their parent molecules, but can also have water solubility and biocompatibility that are not owned by their parent molecules. These brilliant properties provide these materials potentials in biomedical applications. Here, we review the atomistic-level structural models for fullerene derivatives, and their applications as magnetic resonance imaging (MRI) contrast and cancer therapy agents. Because atomistic level structures are the base for their physicochemical properties, we first review the structural models of fullerene derivatives, which are applicable to fullerene derivatives synthesized in different conditions. Second, we review the widely explored applications of the Gd-containing EMF derivatives as the safe and efficient MRI contrast agents, thanks to their special geometries and electronic structures. Reportedly, fullerene-based materials, like Gd@C82(OH)22 nanoparticles, possess intrinsic antitumor activities. The recent advance in using fullerene derivatives for cancer therapy through different pathways, including photodynamic therapy (PDT), reactive oxygen species (ROS) scavenging, drug delivery, adjuvant activity for cancer vaccines, and reduction of the nutrient supply to tumor cells, are further summarized. Finally, we briefly discuss the challenges and perspectives for the future biomedical applications of fullerene derivatives.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kroto HW et al (1985) C60: Buckminsterfullerene. Nature 318:162–163

    Article  CAS  Google Scholar 

  2. Heath JR et al (1985) Lanthanum complexes of spheroidal carbon shells. J Am Chem Soc 107:7779–7780

    Article  CAS  Google Scholar 

  3. Wilson JL et al (1999) Metallofullerene drug design. Coord Chem Rev 190:199–207

    Article  Google Scholar 

  4. Wilson JL (1999) Medical applications of fullerenes and metallofullerenes, vol 8. Electrochemical Society, Pennington, NJ, ETATS-UNIS

    Google Scholar 

  5. Yang J et al (2007) The use of fullerene substituted phenylalanine amino acid as a passport for peptides through cell membranes. Org Biomol Chem 5:260–266

    Article  CAS  Google Scholar 

  6. Lao F et al (2009) Fullerene nanoparticles selectively enter oxidation-damaged cerebral microvessel endothelial cells and inhibit JNK-related apoptosis. ACS Nano 3:3358–3368

    Article  CAS  Google Scholar 

  7. Yin J-J et al (2009) The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials. Biomaterials 30:611–621

    Article  CAS  Google Scholar 

  8. Yin J-J et al (2008) Inhibition of tumor growth by Endohedral Metallofullerenol nanoparticles optimized as reactive oxygen species scavenger. Mol Pharmacol 74:1132–1140

    Article  CAS  Google Scholar 

  9. Fang L et al (2009) Fullerene derivatives protect endothelial cells against NO-induced damage. Nanotechnology 20:225103

    Article  CAS  Google Scholar 

  10. Norton SK et al (2012) Epoxyeicosatrienoic acids are involved in the C70 fullerene derivative–induced control of allergic asthma. J Allerg Clin Immunol 130:761–769

    Article  CAS  Google Scholar 

  11. Ryan JJ et al (2007) Fullerene nanomaterials inhibit the allergic response. J Immunol 179:665–672

    Article  CAS  Google Scholar 

  12. Application of fullerenes in nanomedicine: an update. Nanomedicine 2013, 8, 1191–1208

    Article  CAS  Google Scholar 

  13. Beuerle F et al (2007) Cytoprotective activities of water-soluble fullerenes in zebrafish models. J Exp Nanosci 2:147–170

    Article  CAS  Google Scholar 

  14. Witte P et al (2007) Water solubility, antioxidant activity and cytochrome C binding of four families of exohedral adducts of C60 and C70. Org Biomol Chem 5:3599–3613

    Article  CAS  Google Scholar 

  15. Lotharius J et al (1999) Distinct mechanisms underlie neurotoxin-mediated cell death in cultured dopaminergic neurons. J Neurosci 19:1284–1293

    Article  CAS  Google Scholar 

  16. Dugan LL et al (1996) Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons. Neurobiol Dis 3:129–135

    Article  CAS  Google Scholar 

  17. Gharbi N et al. (2005) [60]Fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett 5:2578–2585

    Article  CAS  Google Scholar 

  18. Dugan LL et al (1997) Carboxyfullerenes as neuroprotective agents. Proc Natl Acad Sci 94:9434–9439

    Article  CAS  Google Scholar 

  19. Dugan LL et al (2001) Fullerene-based antioxidants and neurodegenerative disorders. Parkinsonism Relat Disord 7:243–246

    Article  Google Scholar 

  20. Lin AMY et al (1999) Carboxyfullerene prevents iron-induced oxidative stress in rat brain. J Neurochem 72:1634–1640

    Article  CAS  Google Scholar 

  21. Liu Y et al (2009) The effect of Gd@C82(OH)22 nanoparticles on the release of Th1/Th2 cytokines and induction of TNF-α mediated cellular immunity. Biomaterials 30:3934–3945

    Article  CAS  Google Scholar 

  22. Liu Y et al (2009) Immunostimulatory properties and enhanced TNF-α mediated cellular immunity for tumor therapy by C60 (OH) 20 nanoparticles. Nanotechnology 20:415102

    Article  CAS  Google Scholar 

  23. Wu G et al (2016) Fullerenes and their derivatives as inhibitors of tumor necrosis factor-α with highly promoted affinities. J Mol Model 22:161

    Article  CAS  Google Scholar 

  24. Iwamoto Y, Yamakoshi Y (2006) A highly water-soluble C60-NVP copolymer: a potential material for photodynamic therapy. Chem Commun. 4805–4807

    Google Scholar 

  25. Markovic Z, Trajkovic V (2008) Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60). Biomaterials 29:3561–3573

    Article  CAS  Google Scholar 

  26. Tabata Y et al (1997) Photodynamic effect of polyethylene glycol–modified fullerene on tumor. Jpn J Cancer Res 88:1108–1116

    Article  CAS  Google Scholar 

  27. Otake E et al (2010) Effect and mechanism of a new photodynamic therapy with glycoconjugated fullerene. Photochem Photobiol 86:1356–1363

    Article  CAS  Google Scholar 

  28. Abrahamse H, Hamblin MR (2016) New photosensitizers for photodynamic therapy. Biochem J 473:347–364

    Article  CAS  Google Scholar 

  29. Yu C et al (2016) Photodynamic therapy with hexa(sulfo-n-butyI) 60 fullerene against sarcoma in vitro and in vivo. J Nanosci Nanotechnol 16:171–181

    Article  CAS  Google Scholar 

  30. Liu J-H et al (2010) Fullerene-conjugated doxorubicin in cells. ACS Appl Mater Interfaces 2:1384–1389

    Article  CAS  Google Scholar 

  31. Zakharian TY et al (2005) A fullerene–paclitaxel chemotherapeutic: synthesis, characterization, and study of biological activity in tissue culture. J Am Chem Soc 127:12508–12509

    Article  CAS  Google Scholar 

  32. Montellano A et al (2011) Fullerene C60 as a multifunctional system for drug and gene delivery. Nanoscale 3:4035–4041

    Article  CAS  Google Scholar 

  33. Prylutska S et al (2017) A nanocomplex of C-60 fullerene with cisplatin: design, characterization and toxicity. Beilstein J Nanotechnol 8:1494–1501

    Article  CAS  Google Scholar 

  34. Prylutska S et al (2017) C-60 fullerene enhances cisplatin anticancer activity and overcomes tumor cell drug resistance. Nano Res 10:652–671

    Article  CAS  Google Scholar 

  35. Misra C et al (2017) Improved cellular uptake, enhanced efficacy and promising pharmacokinetic profile of docetaxel employing glycine-tethered C-60-fullerenes. Mater Sci Eng C-Mater Bio Appl 76:501–508

    Article  CAS  Google Scholar 

  36. Guan M et al (2016) Fullerene/photosensitizer nanovesicles as highly efficient and clearable phototheranostics with enhanced tumor accumulation for cancer therapy. Biomaterials 103:75–85

    Article  CAS  Google Scholar 

  37. Zhao L et al (2017) A novel fullerene-based drug delivery system delivering doxorubicin for potential lung cancer therapy. J Nanosci Nanotechnol 17:5147–5154

    Article  CAS  Google Scholar 

  38. Prylutska SV et al. (2015) Complex of C-60 fullerene with doxorubicin as a promising agent in antitumor Therapy. Nanoscale Res Lett. 10

    Google Scholar 

  39. Liu Y et al (2016) Folic acid functionalized gamma-cyclodextrin C-60, a novel vehicle for tumor-targeted drug delivery. J Biomed Nanotechnol 12:1393–1403

    Article  CAS  Google Scholar 

  40. Shi J et al (2016) Fullerene (C-60)-based tumor-targeting nanoparticles with “off-on” state for enhanced treatment of cancer. J Control Release 235:245–258

    Article  CAS  Google Scholar 

  41. Turabekova M et al (2014) Immunotoxicity of nanoparticles: a computational study suggests that CNTs and C60 fullerenes might be recognized as pathogens by Toll-like receptors. Nanoscale 6:3488–3495

    Article  CAS  Google Scholar 

  42. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384

    Article  CAS  Google Scholar 

  43. Pulendran B, Ahmed R (2006) Translating innate immunity into immunological memory: implications for vaccine development. Cell 124:849–863

    Article  CAS  Google Scholar 

  44. Xu L et al (2013) Morphologically virus-like fullerenol nanoparticles act as the dual-functional nanoadjuvant for HIV-1 vaccine. Adv Mat 25:5928–5936

    Article  CAS  Google Scholar 

  45. Jiao F et al (2010) Studies on anti-tumor and antimetastatic activities of fullerenol in a mouse breast cancer model. Carbon 48:2231–2243

    Article  CAS  Google Scholar 

  46. Meng H et al (2010) Potent angiogenesis inhibition by the particulate form of fullerene derivatives. ACS Nano 4:2773–2783

    Article  CAS  Google Scholar 

  47. Sun C et al (2016) C-60(OH)(22): a potential histone deacetylase inhibitor with anti-angiogenic activity. Nanoscale 8:16332–16339

    Article  CAS  Google Scholar 

  48. Lyu Y et al (2016) Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy. ACS Nano 10:4472–4481

    Article  CAS  Google Scholar 

  49. Shi J et al (2016) A multi-functional tumor theranostic nanoplatform for MRI guided photothermal-chemotherapy. Pharm Res 33:1472–1485

    Article  CAS  Google Scholar 

  50. Chiang LY, et al. (1992) Multihydroxy Additions Onto C-60 fullerene molecules. J Chem Soc-Chem Commun. 1791–1793

    Google Scholar 

  51. Chiang LY et al (1992) Versatile nitronium chemistry for C-60 fullerene functionalization. J Am Chem Soc 114:10154–10157

    Article  CAS  Google Scholar 

  52. Chiang LY et al (1993) Evidence of hemiketals incorporated in the structure of fullerols derived from aqueous acid chemistry. J Am Chem Soc 115:5453–5457

    Article  CAS  Google Scholar 

  53. Li J et al. (1993) C-60 Fullerol formation catalyzed by quaternary ammonium hydroxides. J Chem Soc-Chem Commun. 1784–1785

    Google Scholar 

  54. Gonzalez KA et al (2002) Synthesis and in vitro characterization of a tissue-selective fullerene: vectoring C-60(OH)(16) AMBP to mineralized bone. Biorg Med Chem 10:1991–1997

    Article  CAS  Google Scholar 

  55. Wang S et al (2005) Novel and efficient synthesis of water-soluble 60 fullerenol by solvent-free reaction. Synth Commun 35:1803–1808

    Article  CAS  Google Scholar 

  56. Kokubo K et al (2008) Facile synthesis of highly water-soluble fullerenes more than half-covered by hydroxyl groups. ACS Nano 2:327–333

    Article  CAS  Google Scholar 

  57. Kokubo K et al (2011) Facile and scalable synthesis of a highly hydroxylated water-soluble fullerenol as a single nanoparticle. Nano Res 4:204–215

    Article  CAS  Google Scholar 

  58. Saitoh Y et al (2011) Super-highly hydroxylated fullerene derivative protects human keratinocytes from UV-induced cell injuries together with the decreases in intracellular ROS generation and DNA damages. J Photochem Photobiol B 102:69–76

    Article  CAS  Google Scholar 

  59. Mikawa M et al (2001) Paramagnetic water-soluble metallofullerenes having the highest relaxivity for MRI contrast agents. Bioconjug Chem 12:510–514

    Article  CAS  Google Scholar 

  60. Zhang J et al (2007) Synthesis and in vivo study of metallofullerene based MRI contrast agent. J Radioanal Nucl Chem 272:605–609

    Article  CAS  Google Scholar 

  61. Xing G et al (2008) The strong MRI relaxivity of paramagnetic nanoparticles. J Phys Chem B 112:6288–6291

    Article  CAS  Google Scholar 

  62. Laus S et al (2005)Destroying gadofullerene aggregates by salt addition in aqueous solution of Gd@C60(OH)x and Gd@C60[C(COOH2)]10. J Am Chem Soc 127:9368–9369

    Article  CAS  Google Scholar 

  63. Zhang G et al (2010) Facile synthesis of isomerically pure fullerenols and formation of spherical aggregates from C60(OH)8. Angew Chem Int Ed 49:5293–5295

    Article  CAS  Google Scholar 

  64. Rodríguez-Zavala J, Guirado-López R (2004) Structure and energetics of polyhydroxylated carbon fullerenes. Phys Rev B 69:075411

    Article  CAS  Google Scholar 

  65. Rodríguez-Zavala JG, Guirado-López RA (2006) Stability of highly OH-covered C60 fullerenes: role of coadsorbed O impurities and of the charge state of the cage in the formation of carbon-opened structures. J Phys Chem A 110:9459–9468

    Article  CAS  Google Scholar 

  66. Guirado-López RA, Rincón ME (2006) Structural and optical properties of highly hydroxylated fullerenes: stability of molecular domains on the C60 surface. J Chem Phys 125:154312

    Article  CAS  Google Scholar 

  67. He H et al (2011) The structural stability of polyhydroxylated C60(OH)24: Density functional theory characterizations. Comput Theor Chem 974:16–20

    Article  CAS  Google Scholar 

  68. Kroto HW (1987) The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70. Nature 329:529–531

    Article  CAS  Google Scholar 

  69. Campanera JM et al (2005) General rule for the stabilization of fullerene cages encapsulating trimetallic nitride templates. Angew Chem Int Ed 44:7230–7233

    Article  CAS  Google Scholar 

  70. Valencia R et al. (2007) Large fullerenes stabilized by encapsulation of metallic clusters. Chem Commun. 4161–4163

    Google Scholar 

  71. Valencia R et al (2008) Understanding the stabilization of metal carbide endohedral fullerenes M2C2@C82 and related systems. J Phy Chem A 112:4550–4555

    Article  CAS  Google Scholar 

  72. Garcia-Borràs M et al (2013) Maximum aromaticity as a guiding principle for the most suitable hosting cages in endohedral metallofullerenes. Angew Chem Int Ed 52:9275–9278

    Article  CAS  Google Scholar 

  73. Wang ZZ et al (2015) Syntheses, structures and antioxidant activities of fullerenols: knowledge learned at the atomistic level. J Cluster Sci 26:375–388

    Article  CAS  Google Scholar 

  74. Gao X et al (2016) Isolated aromatic patches as a rule to select metallofullerene multiple adducts with high chemical stabilities. Carbon 96:980–986

    Article  CAS  Google Scholar 

  75. Gao XJ et al (2016) Improved description for the structures of fullerenols C60(OH)n (n = 12–48) and C2v(9)–C82(OH)x (x = 14–58). J Phys Chem C 120:11709–11715

    Article  CAS  Google Scholar 

  76. Wang Z et al (2014) A precision structural model for fullerenols. Chem Science 5:2940–2948

    Article  CAS  Google Scholar 

  77. Wang Z et al (2015) Oxidation-induced water-solubilization and chemical functionalization of fullerenes C60, Gd@C60 and Gd@C82: atomistic insights into the formation mechanisms and structures of fullerenols synthesized by different methods. Nanoscale 7:2914–2925

    Article  CAS  Google Scholar 

  78. Yaghobi M et al (2009) Optical and structural properties of the endohedral complexes M@C60 (M=Cs, Li, and Na). J Mol Struct (Thoechem) 905:48–50

    Article  CAS  Google Scholar 

  79. Decleva P et al (1999) Theoretical study of resonances in the metal core photoionization of M@C 60 (M=Li, Na, K). J Phys B: At Mol Opt Phys 32:4523

    Article  CAS  Google Scholar 

  80. Brocl/awik E, Eilmes A (1998) Density functional study of endohedral complexes M@C60 (M=Li, Na, K, Be, Mg, Ca, La, B, Al): Electronic properties, ionization potentials, and electron affinities. J Chem Phys 108:3498–3503

    Google Scholar 

  81. Jingnan L et al (1994) Structural properties of the endohedral complex Na+@C 60. J Phys: Condens Matter 6:L253

    Google Scholar 

  82. Stepniak F et al (1993) Electrical transport in Na, K, Rb, and Cs fullerides: phase formation, microstructure, and metallicity. Phys Rev B 48:1899–1906

    Article  CAS  Google Scholar 

  83. Inoue T et al (1999) XAFS study on Eu@C60. J Synchrotron Radiat 6:779–780

    Article  CAS  Google Scholar 

  84. Suzuki M et al (2012) Single-crystal X-ray diffraction study of three Yb@C82 isomers cocrystallized with NiII(octaethylporphyrin). J Am Chem Soc 134:18772–18778

    Article  CAS  Google Scholar 

  85. Okazaki T et al (2000) Isolation and spectroscopic characterization of Sm-containing metallofullerenes. Chem Phys Lett 320:435–440

    Article  CAS  Google Scholar 

  86. Lu J et al (1999) Electronic structures of endohedral Sr@C60, Ba@C60, Fe@C60 and Mn@C60. Mod Phys Lett B 13:97–101

    Article  CAS  Google Scholar 

  87. Pichler T et al (1998) The metallofullerene Tm@C82: isomer-selective electronic structure. Appl Phys A 66:281–285

    Article  CAS  Google Scholar 

  88. Wang LS et al (1993) The electronic structure of Ca@C60. Chem Phys Lett 207:354–359

    Article  CAS  Google Scholar 

  89. Kubozono Y et al (2003) Crystal structure and electronic transport of $\mathrm{Dy}@{\mathrm{C}}_{82}$. Physical Review B 67:115410

    Article  CAS  Google Scholar 

  90. Ding J, Yang S (1996) Isolation and Characterization of Pr@C82 and Pr2@C80. J Am Chem Soc 118:11254–11257

    Article  CAS  Google Scholar 

  91. Ding J et al (1996) Isolation and characterization of a new metallofullerene Nd@C82. Chem Phys Lett 261:92–97

    Article  CAS  Google Scholar 

  92. Suzuki T et al (1993) Electrochemical properties of La@C82. J Am Chem Soc 115:11006–11007

    Article  CAS  Google Scholar 

  93. Kobayashi K, Nagase S (1998) Structures and electronic states of M@C82 (M=Sc, Y, La and lanthanides). Chem Phys Lett 282:325–329

    Article  CAS  Google Scholar 

  94. Gao X et al (2015) Divalent metals can reside on bonds in fullerenes. Dalton Trans 44:9561–9568

    Article  CAS  Google Scholar 

  95. Caravan P et al (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99:2293–2352

    Article  CAS  Google Scholar 

  96. Bolskar RD et al (2003) First soluble M@C-60 derivatives provide enhanced access to metallofullerenes and permit in vivo evaluation of Gd@C–60 C(COOH)(2) (10) as a MRI contrast agent. J Am Chem Soc 125:5471–5478

    Article  CAS  Google Scholar 

  97. Lu X et al (2004) Studies on the relaxivities of novel MRI contrast agents two water-soluble derivatives of Gd@C-82. Chem J Chin Univ-Chin 25:697–700

    CAS  Google Scholar 

  98. Sitharaman B et al (2004) Gd@C-60 C(COOH)(2) (10) and Gd@C-60(OH)(x): Nanoscale aggregation studies of two metallofullerene MRI contrast agents in aqueous solution. Nano Lett 4:2373–2378

    Article  CAS  Google Scholar 

  99. Chaur MN et al (2007) Gd3 N@C-2n (n = 40, 42, and 44): remarkably low HOMO-LUMO gap and unusual electrochemical reversibility of Gd3 N@C-88. J Am Chem Soc 129:14826–14829

    Article  CAS  Google Scholar 

  100. Dunsch L, Yang S (2007) Metal nitride cluster fullerenes: their current state and future prospects. Small 3:1298–1320

    Article  CAS  Google Scholar 

  101. Takano Y et al (2009) Anisotropic magnetic behavior of anionic Ce@C-82 carbene adducts. J Am Chem Soc 131:9340–9346

    Article  CAS  Google Scholar 

  102. Grushko YS et al (2010) MRI-Contrasting system based on water-soluble fullerene/Gd-metallofullerene mixture. Fuller Nanotub Carb Nanostruct 18:417–421

    Article  CAS  Google Scholar 

  103. Chen N et al (2012) Sc2S@C-s(10528)-C-72: a dimetallic sulfide endohedral fullerene with a non isolated pentagon rule cage. J Am Chem Soc 134:7851–7860

    Article  CAS  Google Scholar 

  104. Zhang J et al (2014) Gd3 N@C-84(OH)(x): A new egg-shaped metallofullerene magnetic resonance imaging contrast agent. J Am Chem Soc 136:2630–2636

    Article  CAS  Google Scholar 

  105. Li T et al (2015) A new interleukin-13 amino-coated gadolinium metallofullerene nanoparticle for targeted MRI detection of glioblastoma tumor cells. J Am Chem Soc 137:7881–7888

    Article  CAS  Google Scholar 

  106. Li T et al (2016) A new interleukin-13 amino-coated gadolinium metallofullerene nanoparticle for targeted MRI detection of glioblastoma tumor cells (vol 137, pg 7881, 2015). J Am Chem Soc 138:1723

    Article  CAS  Google Scholar 

  107. Li T, Dorn HC (2017) Biomedical applications of metal-encapsulated fullerene nanoparticles. Small. 13

    Google Scholar 

  108. Kato H et al (2003) Lanthanoid endohedral metallofullerenols for MRI contrast agents. J Am Chem Soc 125:4391–4397

    Article  CAS  Google Scholar 

  109. Qu L et al (2006) Study of rare earth encapsulated carbon nanomolecules for biomedical uses. J Alloy Compd 408:400–404

    Article  CAS  Google Scholar 

  110. Iezzi EB et al (2002) Lutetium-based trimetallic nitride endohedral metallofullerenes: new contrast agents. Nano Lett 2:1187–1190

    Article  CAS  Google Scholar 

  111. Fatouros PP et al (2006) In vitro and in vivo imaging studies of a new endohedral metallofullerene nanoparticle. Radiology 240:756–764

    Article  Google Scholar 

  112. Zhang E-Y et al (2007) Preparation and characterization of two new water-soluble endohedral metallofullerenes as magnetic resonance imaging contrast agents. J Phys Chem B 111:14223–14226

    Article  CAS  Google Scholar 

  113. Shu C et al (2009) Facile preparation of a new gadofullerene-based magnetic resonance imaging contrast agent with high H-1 relaxivity. Bioconjug Chem 20:1186–1193

    Article  CAS  Google Scholar 

  114. Zhang J et al (2010) High relaxivity trimetallic nitride (Gd3 N) metallofullerene MRI contrast agents with optimized functionality. Bioconjug Chem 21:610–615

    Article  CAS  Google Scholar 

  115. Adiseshaiah P et al (2013) A novel gadolinium-based trimetasphere metallofullerene for application as a magnetic resonance imaging contrast agent. Invest Radiol 48:745–754

    Article  CAS  Google Scholar 

  116. Shu CY et al (2006) Synthesis and characterization of a new water-soluble endohedral metallofullerene for MRI contrast agents. Carbon 44:496–500

    Article  CAS  Google Scholar 

  117. Shu C-Y et al (2008) Organophosphonate functionalized Gd@C-82 as a magnetic resonance imaging contrast agent. Chem Mater 20:2106–2109

    Article  CAS  Google Scholar 

  118. Shu C-Y et al (2008) Conjugation of a water-soluble gadolinium endohedral fulleride with an antibody as a magnetic resonance imaging contrast agent. Bioconjug Chem 19:651–655

    Article  CAS  Google Scholar 

  119. Cui R et al (2015) Novel carbon nanohybrids as highly efficient magnetic resonance imaging contrast agents. Nano Research 8:1259–1268

    Article  CAS  Google Scholar 

  120. Laus S et al (2007) Understanding paramagnetic relaxation phenomena for water-soluble gadofullerenes. J Phys Chem C 111:5633–5639

    Article  CAS  Google Scholar 

  121. MacFarland DK et al (2008) Hydrochalarones: a novel endohedral metallofullerene platform for enhancing magnetic resonance imaging contrast. J Med Chem 51:3681–3683

    Article  CAS  Google Scholar 

  122. Wang S et al. (2017) core-satellite polydopamine-gadolinium-metallofullerene nanotheranostics for multimodal imaging guided combination cancer therapy. Adv Mater (Deerfield Beach, Fla.)

    Article  CAS  Google Scholar 

  123. Zheng J-P et al (2013) Multifunctional gadofulleride nanoprobe for magnetic resonance imaging/fluorescent dual modality molecular imaging and free radical scavenging. Carbon 65:175–180

    Article  CAS  Google Scholar 

  124. Chen C et al (2005) Multihydroxylated[Gd@C82(OH)22]n Nanoparticles: antineoplastic activity of high efficiency and low toxicity. Nano Lett 5:2050–2057

    Article  CAS  Google Scholar 

  125. Wang J et al (2014) Therapeutic applications of low-toxicity spherical nanocarbon materials. NPG Asia Mater 6:e84

    Article  CAS  Google Scholar 

  126. Roursgaard M et al (2008) Polyhydroxylated C60 fullerene (fullerenol) attenuates neutrophilic lung inflammation in mice. Basic Clin Pharmacol Toxicol 103:386–388

    Article  CAS  Google Scholar 

  127. Yang D et al (2010) Nanoparticles, [Gd@C(82)(OH)(22)](n), induces dendritic cell maturation and activates Th1 immune responses. ACS Nano 4:1178–1186

    Article  CAS  Google Scholar 

  128. Cai X et al (2010) The polyhydroxylated fullerene derivative C60(OH)24 protects mice from ionizing-radiation-induced immune and mitochondrial dysfunction. Toxicol Appl Pharmacol 243:27–34

    Article  CAS  Google Scholar 

  129. Ding N et al (2011) Intratracheal administration of fullerene nanoparticles activates splenic CD11b + cells. J Hazard Mater 194:324–330

    Article  CAS  Google Scholar 

  130. Valko M et al (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Bio 39:44–84

    Article  CAS  Google Scholar 

  131. Halliwell B, Gutteridge JM (2015) Free radicals in biology and medicine. Oxford University Press, USA

    Book  Google Scholar 

  132. Stadtman ER, Berlett BS (1997) Reactive oxygen-mediated protein oxidation in aging and disease. Chem Res Toxicol 10:485–494

    Article  CAS  Google Scholar 

  133. Loft S, Poulsen HE (1996) Cancer risk and oxidative DNA damage in man. J Mol Med 74:297–312

    Article  CAS  Google Scholar 

  134. Aust SD et al (1993) Free radicals in toxicology. Toxicol Appl Pharmacol 120:168–178

    Article  CAS  Google Scholar 

  135. Hileman EA et al (2001) Superoxide dismutase: an emerging target for cancer therapeutics. Expert Opin Ther Targets 5:697–710

    Article  CAS  Google Scholar 

  136. Pelicano H et al (2004) ROS stress in cancer cells and therapeutic implications. Drug Resist Updates 7:97–110

    Article  CAS  Google Scholar 

  137. Toyokuni S et al (1995) Persistent oxidative stress in cancer. FEBS Lett 358:1–3

    Article  CAS  Google Scholar 

  138. Lai H-S et al (2000) Free radical scavenging activity of fullerenol on the ischemia-reperfusion intestine in dogs. World J Surg 24:450–454

    Article  CAS  Google Scholar 

  139. Bisaglia M et al (2000) C3-fullero-tris-methanodicarboxylic acid protects cerebellar granule cells from apoptosis. J Neurochem 74:1197–1204

    Article  CAS  Google Scholar 

  140. Tsai MC et al (1997) Polyhydroxylated C60, fullerenol, a novel free-radical trapper, prevented hydrogen peroxide- and cumene hydroperoxide-elicited changes in rat hippocampus in-vitro. J Pharm Pharmacol 49:438–445

    Article  CAS  Google Scholar 

  141. Krusic PJ et al (1991) Radical reactions of C$_{60}$. Science 254:1183–1185

    Article  CAS  Google Scholar 

  142. Cong W et al (2015) Evaluation of the influence of fullerenol on aging and stress resistance using Caenorhabditis elegans. Biomaterials 42:78–86

    Article  CAS  Google Scholar 

  143. Tang J et al (2016) Polyhydroxylated fullerenols regulate macrophage for cancer adoptive immunotherapy and greatly inhibit the tumor metastasis. Nanomed Nanotechnol Biol Med 12:945–954

    Article  CAS  Google Scholar 

  144. Pan Y et al (2015) Gd–Metallofullerenol nanomaterial suppresses pancreatic cancer metastasis by inhibiting the interaction of histone deacetylase 1 and metastasis-associated protein 1. ACS Nano 9:6826–6836

    Article  CAS  Google Scholar 

  145. Chen Z et al (2014) Polyhydroxylated metallofullerenols stimulate IL-1β secretion of macrophage through TLRs/MyD88/NF-κB pathway and NLRP3 inflammasome activation. Small 10:2362–2372

    Article  CAS  Google Scholar 

  146. Chen Z et al (2012) Applications of functionalized fullerenes in tumor theranostics. Theranostics 2:238–250

    Article  CAS  Google Scholar 

  147. Li W et al (2011) The inhibition of death receptor mediated apoptosis through lysosome stabilization following internalization of carboxyfullerene nanoparticles. Biomaterials 32:4030–4041

    Article  CAS  Google Scholar 

  148. Zhou G et al (2010) Subcellular distribution of polyhydroxylated metallofullerene Gd@C82(OH)22 in different tissues of tumor-bearing mice. J Nanosci Nanotechnol 10:8597–8602

    Article  CAS  Google Scholar 

  149. Jiao F et al (2010) Modulation of oxidative stress by functionalized fullerene materials in the lung tissues of female C57/BL mice with a metastatic lewis lung carcinoma. J Nanosci Nanotechnol 10:8632–8637

    Article  CAS  Google Scholar 

  150. Chen C (2016) Biomedical applications and toxicology of carbon nanomaterials, Wiley

    Google Scholar 

  151. Dellinger A et al (2009) Fullerene nanomaterials inhibit phorbol myristate acetate-induced inflammation. Exp Dermatol 18:1079–1081

    Article  CAS  Google Scholar 

  152. Forman HJ, Torres M (2002) Reactive oxygen species and cell signaling. Am J Respir Crit Care Med 166:S4–S8

    Article  Google Scholar 

  153. Li H et al (2011) Alpha-alumina nanoparticles induce efficient autophagy-dependent cross-presentation and potent antitumour response. Nat Nano 6:645–650

    Article  CAS  Google Scholar 

  154. Brant JA et al (2007) Fullerol cluster formation in aqueous solutions: Implications for environmental release. J Colloid Interface Sci 314:281–288

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21371118, 41430644).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingfa Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gao, X.J., Shen, X., Xing, G., Gao, X. (2018). Fullerenes for Cancer Therapy and Bioimaging. In: Gonçalves, G., Tobias, G. (eds) Nanooncology. Nanomedicine and Nanotoxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-89878-0_12

Download citation

Publish with us

Policies and ethics