Skip to main content

A Design Approach for Cooling Gas Turbine Intake Air with Solar-Assisted Absorption Cooling Cycle

  • Chapter
  • First Online:
  • 1025 Accesses

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The Republic of Turkey’s current energy policy encourages households, industries, and energy production facilities to be energy wise. In this chapter, the Bursa Ovaakça power plant, which is one of the largest power plants of Turkey, was investigated with regard to boosting production. The scope of this chapter was to design a solar-assisted absorption cooling plant for cooling the intake air of gas turbines. The aim of this chapter is to achieve an efficiency augmentation in gas turbines through a solar energy-assisted absorption cooling system. The COP of the designed absorption cooling system has been calculated to be 0.75, and the utilization factor is 28.6.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Barigozzi G, Perdichizzi A, Gritti C, Guaiatelli I (2015) Techno-economic analysis of gas turbine inlet air cooling for combined cycle power plant for different climatic conditions. Appl Therm Eng 82:57–67. https://doi.org/10.1016/j.applthermaleng.02.049

    Article  Google Scholar 

  2. Moya M, Bruno JC, Eguia P, Torres E, Zamora I, Coronas A (2011) Performance analysis of a trigeneration system based on a micro gas türbine and an air-cooled, indirect fired, ammonia-water absorption chiller. Appl Energy 88:4424–4440. https://doi.org/10.1016/j.apenergy.2011.05.021

    Article  Google Scholar 

  3. Noroozian A, Bidi M (2016) An applicable method for gas turbine efficiency improvement. Case study: Montazar Ghaem power plant, Iran. J Nat Gas Sci Eng 28:95–105. https://doi.org/10.1016/j.jngse.2015.11.032

    Article  Google Scholar 

  4. Şöhret Y, Açıkkalp E, Hepbasli A, Karakoc TH (2015) Advanced exergy analysis of an aircraft gas turbine engine: splitting exergy destructions into parts. Energy 90:1219–1228

    Article  Google Scholar 

  5. Khaljani M, Khoshbakhti Saray R, Bahlouli K (2015) Comprehensive analysis of energy, exergy and exergo-economic of cogeneration of heat and power in a combined gas turbine and organic Rankine cycle. Energy Convers Manag 97:154–165

    Article  Google Scholar 

  6. Ahmadi P, Dincer I, Rosen MA (2011) Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants. Energy 36:5886–5898

    Article  Google Scholar 

  7. Kotowicz J, Job M, Brzeczek M (2015) The characteristics of ultramodern combined cycle power plants. Energy 92:197–211

    Article  Google Scholar 

  8. Ahmadi P, Dincer I (2011) Thermodynamic and exergoenvironmental analyses, and multi-objective optimization of a gas turbine power plant. Appl Therm Eng 31:2529–2540

    Article  Google Scholar 

  9. Aminov Z, Nakagoshi N, Xuan TD, Higashi O, Alikulov K (2016) Evaluation of the energy efficiency of combined cycle gas turbine. Case study of Tashkent thermal power plant, Uzbekistan. Appl Therm Eng 103:501–509. https://doi.org/10.1016/j.applthermaleng.2016.03.158

    Article  Google Scholar 

  10. Al-Fahed SF, Alasfour FN, Abdulrahim HK (2009) The effect of elevated inlet air temperature and relative humidity on cogeneration system. Int J Energy Res 33(15):1384–1394. https://doi.org/10.1002/er.1552

    Article  Google Scholar 

  11. Karaali R, Öztürk IT (2017) Efficiency improvement of gas turbine cogeneration systems. Tech Gaz 24(Suppl. 1):21–27

    Google Scholar 

  12. Karaali R, Öztürk IT (2017) Performance analyses of gas turbine cogeneration plants. J Therm Sci Technol 37(1):25–33

    Google Scholar 

  13. Karaali R, Öztürk IT (2015) Thermoeconomic optimization of gas turbine cogeneration plants. Energy 80:474–485. https://doi.org/10.1016/j.energy.2014.12.004

    Article  Google Scholar 

  14. Karaali R, Öztürk IT (2015) Thermoeconomic analyses of steam injected gas turbine cogeneration cycles. Acta Phys Pol A 128(2B):B279–B281

    Article  Google Scholar 

  15. De S, Al Zubaidy A (2011) Gas turbine performance at varying ambient temperature. Appl Therm Eng 31:2735–2739

    Article  Google Scholar 

  16. Unver U, Kılıç M (2007) Second law based Thermoeconomıc Analysıs of Combıned cycle power plants Consıderıng the effects of Envıronmental temperature and load Varıatıons. Int J of Energy Res. (doi: 10.1002/er.1239) 31(2):148–157

    Article  Google Scholar 

  17. Unver U, Kılıç M (2014) Performance estimation of gasturbine system via degree-day method. SPRINGER, progress in exergy, energy, and the environment. Part II: Energy:553–558. https://doi.org/10.1007/978-3-319-04681-5_51

  18. Unver U, Kılıç M (2017) Influence of environmental temperature on exergetic parameters of a combined cycle power plant. Int J Exergy 22(1):73–88

    Article  Google Scholar 

  19. Najjar YSH, Abubaker AM, El-Khalil AFS (2015) Novel inlet air cooling with gas turbine engines using cascaded waste-heat recovery for green sustainable energy. Energy 93:770–785. https://doi.org/10.1016/j.energy.2015.09.033

    Article  Google Scholar 

  20. Saghafifar M, Gadalla M (2015) Innovative inlet air cooling technology for gas turbine power plants using integrated solid desiccant and Maisotsenko cooler. Energy 87:663–677

    Article  Google Scholar 

  21. Alhazmy MM, Najjar YSH (2004) Augmentation of gas turbine performance using air coolers. Appl Therm Eng 24:415–429

    Article  Google Scholar 

  22. Zurigat YH, Dawoud B, Bortmany J (2006) On the technical feasibility of gas turbine inlet air cooling utilizing thermal energy storage. Int J Energy Res 30:291–305

    Article  Google Scholar 

  23. Al-Ibrahim AM, Varnham A (2010) A review of inlet air-cooling technologies for enhancing the performance of combustion turbines in Saudi Arabia. Appl Therm Eng 30:1879–1888

    Article  Google Scholar 

  24. Bruno JC, Miquel J, Castells F (1999) Modeling of ammonia absorption chillers integration in energy systems of process plants. Appl Therm Eng 19:1297–1328. https://doi.org/10.1016/s1359-4311(99)00004-6

    Article  Google Scholar 

  25. Najjar YSH (1996) Enhancement of performance of gas turbine engines by inlet air cooling and cogeneration system. Appl Therm Eng 16(2):163–173

    Article  Google Scholar 

  26. Najjar YSH, Abubaker AM (2015) Indirect evaporative combined inlet air cooling with gas turbines for green power technology. Int J Refrig 59:235–250. https://doi.org/10.1016/j.ijrefrig.2015.07.001

    Article  Google Scholar 

  27. Yang C, Yang Z, Cai R (2009) Analytical method for evaluation of gas turbine inlet air cooling in combined cycle power plant. Appl Energy 86:848–856

    Article  Google Scholar 

  28. Mahmoudi SMS, Zare V, Rnajbar F, Farshi LG (2009) Energy and exergy analysis of simple and regenerative gas turbines inlet air cooling using absorption refrigeration. J Appl Sci 9(13):2399–2407

    Article  Google Scholar 

  29. Kaynakli O, Kilic M (2007) Theoretical study on the effect of operating conditions on performance of absorption refrigeration system. Energy Convers Manag 48:599–607. https://doi.org/10.1016/j.enconman.2006.06.005

    Article  Google Scholar 

  30. Eicker U, Pietruschka D (2009) Design and performance of solar powered absorption cooling systems in office buildings. Energ Buildings 41:81–91

    Article  Google Scholar 

  31. Kaynaklı Ö, Yamankaradeniz R (2003) Absorpsiyonlu Soğutma Sistemlerinde Kullanılan Eşanjörlerin Sistemin Performansına Etkisi. Uludag Univ J Eng Facul 8(1):111–120

    Google Scholar 

  32. Atmaca İ, Yiğit A, Kilic M (2002) The effect of input temperatures on the absorber parameters. Int Comn Heat Mass Transf 29(8):1177–1186

    Article  Google Scholar 

  33. Atmaca İ, Yiğit A (2003) Simulation of solar – powered absorption cooling system. Renew Energy 28:1277–1293

    Article  Google Scholar 

  34. Karamangil MI, Coskun S, Kaynakli O, Yamankaradeniz N (2010) A simulation study of performance evaluation of single-stage absorption refrigeration system using conventional working fluids and alternatives. Renew Sust Energ Rev 14(7):1969–1978. https://doi.org/10.1016/j.rser.2010.04.008

    Article  Google Scholar 

  35. Palm B, Claesson J (2006) Plate heat exchangers: calculation methods for Singleand two-phase flow. Heat Transf Eng 27(4):88–98. https://doi.org/10.1080/01457630500523949

    Article  Google Scholar 

  36. Colonna P, Gabrielli S (2003) Industrial trigeneration using ammonia–water absorption refrigeration systems (AAR). Appl Therm Eng 23:381–396. https://doi.org/10.1016/s1359-4311(02)00212-0

    Article  Google Scholar 

  37. Calise F, Libertini L, Vicidomini M (2017) Design and optimization of a novel solar cooling system for combined cycle power plants. J Clean Prod 161:1385–1403

    Article  Google Scholar 

  38. Bassily AM (2004) Performance improvements of the intercooled reheat recuperated gas-turbine cycle using absorption inlet-cooling and evaporative after-cooling. Appl Energy 77(3):249–272

    Article  Google Scholar 

  39. Unver U, Ozkara G, Kalyoncu EM (2017) Design of a renewable assisted absorption cooling system for gas turbine intake air cooling. 9th International Exergy, Energy and Environment Symposium (IEEES-9), May 14–17, 2017, Split, Croatia. Proceeding Book in Sandro Nizetic Eds. pp 811–816

    Google Scholar 

Download references

Acknowledgment

This chapter is the extended version of the earlier work of Unver et al. published in the 9th International Exergy, Energy and Environment Symposium (IEEES-9) Proceedings book with the title “The design of a renewable assisted absorption cooling system for gas turbine intake air cooling” [39].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umit Unver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Unver, U., Ozkara, G., Bahar, E.M. (2018). A Design Approach for Cooling Gas Turbine Intake Air with Solar-Assisted Absorption Cooling Cycle. In: Nižetić, S., Papadopoulos, A. (eds) The Role of Exergy in Energy and the Environment. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-89845-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89845-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89844-5

  • Online ISBN: 978-3-319-89845-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics