Skip to main content

Tree Endophytes: Cryptic Drivers of Tropical Forest Diversity

  • Chapter
  • First Online:
Endophytes of Forest Trees

Part of the book series: Forestry Sciences ((FOSC,volume 86))

Abstract

Roots and leaves comprise two of the largest microbial habitats on Earth, particularly in tropical forests where root and leaf surface areas are extremely high and microbes are abundant and diverse. Fungal and bacterial endophytes are primarily acquired via contagious spread from the surrounding environment. The soil is an important reservoir for both fungal and bacterial endophytes; we term this a soil microbial bank and suggest that it functions similarly to a soil seed bank. Because most (~75%) studies have found a strong positive relationship between plant diversity and soil microbial diversity, we predict that as plant diversity increases so will endophyte taxonomic and functional diversity. Once inside plant host tissues, endophytes can act as mutualists and increase plant performance directly by producing plant hormones, or indirectly by decreasing fungal or insect damage by up to 80%. Recent studies, however, have demonstrated that there are costs associated with hosting “beneficial” endophytes for tropical trees. This is important because it challenges more traditional dichotomies (e.g., beneficial or deleterious) about endophytes and suggests that there are highly complex and context-dependent trade-offs and costs involved in plant-endophyte interactions. Though they comprise a cryptic component of tropical forests, plant-microbe interactions may typically regulate tree diversity, composition, and forest function at neighborhood and even regional scales. For example, pathogens may maintain tree diversity by reducing the fitness of common species in areas where plant host density is high or where hosts are close to reproductive conspecific adults. Moreover, plant-endophyte interactions, whether pathogenic or mutualistic, may comprise an entirely novel dimension of niche differentiation for coexisting tree species. Overall, tree endophytes in tropical forests are complex, yet critical drivers of forest dynamics and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam M, Heuer H, Hallman J (2014) Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants. PLoS ONE 9:e90402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Agrios GN (2005) Plant diseases caused by prokaryotes: bacteria and mollicutes. Plant Pathology, 5th edn. Elsevier Academic Press, New York, pp 616–704

    Google Scholar 

  • Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41:1–16

    Article  Google Scholar 

  • Amman RI, Ludwig W, Sckleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    Google Scholar 

  • Antoninka A, Wolf JE, Bowker M et al (2009) Linking above- and belowground responses to global change at community and ecosystem scales. Glob Change Biol 15:914–929

    Article  Google Scholar 

  • Antoninka A, Reich PB, Johnson NC (2011) Seven years of carbon dioxide enrichment, nitrogen fertilization and plant diversity influence arbuscular mycorrhizal fungi in a grassland ecosystem. New Phytol 192:200–214

    Article  PubMed  Google Scholar 

  • Arnold AE (2005) Diversity and ecology of fungal endophytes in tropical forests. In: Current trends in mycological research. IBH Publishing Co. Pvt. Ltd., New Delhi, pp 49–68

    Google Scholar 

  • Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66

    Article  Google Scholar 

  • Arnold AE (2008) Endophytic fungi: hidden components of tropical community ecology. In: Carson WP, Schnitzer SA (eds) Tropical forest community ecology. Wiley, Oxford, pp 254–271

    Google Scholar 

  • Arnold AE, Herre EA (2003) Canopy cover and leaf age affect colonization by tropical fungal endophytes: ecological patterns and process in Theobroma cacao (Malvaceae). Mycologia 95:388–398

    Article  PubMed  Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549

    Article  PubMed  Google Scholar 

  • Arnold AE, Maynard Z, Gilbert GS et al (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3:267–274

    Article  Google Scholar 

  • Arnold AE, Mejia LC, Kyllo D et al (2003) Fungal endophytes limit pathogen damage in a tropical tree. P Natl Acad Sci USA 100:15649–15654

    Article  CAS  Google Scholar 

  • Augspurger CK (1983) Seed dispersal of the tropical tree, Platypodium elegans, and the escape of its seedlings from fungal pathogens. J Ecol 71:759–771

    Article  Google Scholar 

  • Augspurger CK (1984) Pathogen mortality of tropical tree seedlings: a comparative study of growth and survival. J Ecol 72:777–795

    Article  Google Scholar 

  • Augspurger CK, Kelly CK (1984) Pathogen mortality of tropical tree seedlings: experimental studies of the effects of dispersal distance, seedling density, and light conditions. Oecologia 61:211–217

    Article  PubMed  Google Scholar 

  • Azevedo JL, Araujo WL, Lacava PT (2016) The diversity of citrus endophytic bacteria and their interactions with Xylella fastidiosa and host plants. Genet Mol Biol 39:476–491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bagchi R, Gallery RE, Gripenberg S et al (2014) Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature 506:85–88

    Article  PubMed  CAS  Google Scholar 

  • Bahram M, Polme S, Koljalg U et al (2012) Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of northern Iran. New Phytol 193:465–473

    Article  PubMed  Google Scholar 

  • Bajo J, Santamaria O, Diez JJ (2008) Cultural characteristics and pathogenicity of Pestalotiopsis funera on Cupressus arizonica. Forest Pathol 38:263–274

    Article  Google Scholar 

  • Bakker PA, Doornbos RF, Zamioudis C et al (2013) Induced systemic resistance and the rhizosphere microbiome. Plant Pathology J 29:136–143

    Article  Google Scholar 

  • Baldani J, Caruso L, Baldani VLD et al (1997) Recent advances in BNF with non-legume plants. Soil Biol Biochem 29:911–922

    Article  CAS  Google Scholar 

  • Barbieri E, Potenza L, Rossi I et al (2000) Phylogenetic characterization and in situ detection of Cytophaga-Flexibacter-Bacteroides phylogroup bacterium in Tuber borchii Vittad. Ectomycorrhizal mycelium. Appl Environ Microb 66:5035–5042

    Article  CAS  Google Scholar 

  • Bargabus RL, Zidack NK, Sherwood JE, Jacobsen BJ (2002) Characterization of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiol Mol Plant P 61:289–298

    Article  CAS  Google Scholar 

  • Bargabus RL, Zidack NK, Sherwood JE, Jacobsen BJ (2004) Screening for the identification of potential biological control agents that induce systemic resistance in sugar beet. Biol Control 30:342–350

    Article  Google Scholar 

  • Barone JA (1998) Host-specificity of folivorous insects in a moist tropical forest. J Anim Ecol 67:400–409

    Article  Google Scholar 

  • Bashan Y, Okon Y (1981) Inhibition of seed germination and development of tomato plants in soil infested with Pseudomonas tomato. Ann Appl Biol 98:413–417

    Article  Google Scholar 

  • Beattie GA, Lindow SE (1995) The secret life of foliar bacterial pathogens on leaves. Annu Rev Phytopathol 33:145–172

    Article  PubMed  CAS  Google Scholar 

  • Beattie GA, Lindow SE (1999) Bacterial colonization of leaves: a spectrum of strategies. Phytopathology 89:353–359

    Article  PubMed  CAS  Google Scholar 

  • Benitez-Malvido J, Garcia-Guzman G, Kossmann-Ferraz ID (1999) Leaf-fungal incidence and herbivory on tree seedlings in tropical rainforest fragments: an experimental study. Biol Conserv 91:143–150

    Article  Google Scholar 

  • Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26

    Article  CAS  Google Scholar 

  • Berdy J (2012) Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot 65:385–395

    Article  CAS  Google Scholar 

  • Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Tech 84:11–18

    Article  CAS  Google Scholar 

  • Bertaux J, Schmid M, Hutzler P et al (2005) Occurrence and distribution of endobacteria in the plant-associated mycelium of the ectomycorrhizal fungus Laccaria bicolor S238N. Environ Microbiol 7:1786–1795

    Article  PubMed  CAS  Google Scholar 

  • Bever JD, Dickie IA, Facelli E et al (2010) Rooting theories of plant community ecology in microbial interactions. Trends Ecol Evol 25:468–478

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhore SJ, Ravichanter N, Loh CY (2010) Screening of endophytic bacteria isolated from leaves of Sambung Nyawa [Gynura procumbens (Lour.) Merr.] for cytokinin-like compounds. Bioinformation 5:191–196

    Article  PubMed  PubMed Central  Google Scholar 

  • Bianciotto V, Bandi C, Minerdi D et al (1996) An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Appl Environ Microb 62:3005–3010

    CAS  Google Scholar 

  • Bianciotto V, Lumini E, Bonfante P, Vandamme P (2003) ‘Candidatus Glomeribacter gigasporarum’ gen nov., sp. nov., an endosymbiont of arbuscular mycorrhizal fungi. Int J Syst Evol Microbiol 53:121–124

    Article  PubMed  CAS  Google Scholar 

  • Bianciotto V, Genre A, Jargeat P et al (2004) Vertical transmission of endobacteria in the arbuscular mycorrhizal fungus Gigaspora margarita through generation of vegetative spores. Appl Environ Microb 70:3600–3608

    Article  CAS  Google Scholar 

  • Biruma M, Pillay M, Tripathi L et al (2007) Banana Xanthomonas wilt: a review of the disease, management strategies and future research directions. Afr J Biotechnol 6:953–962

    Google Scholar 

  • Bittleston LS, Brockmann F, Wcislo W, Van Bael SA (2011) Endophytic fungi reduce leaf-cutting ant damage to seedlings. Biol Letters 7:30–32

    Article  CAS  Google Scholar 

  • Blanton CM, Ewel JJ (1985) Leaf-cutting ant herbivory in successional and agricultural tropical ecosystems. Ecology 66:861–869

    Article  Google Scholar 

  • Bonfante P, Anca IA (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383

    Article  PubMed  CAS  Google Scholar 

  • Borstler B, Renker C, Kahmen A, Buscot F (2006) Species composition of arbuscular mycorrhizal fungi in two mountain meadows with differing management types and levels of plant biodiversity. Biol Fert Soils 42:286–298

    Article  Google Scholar 

  • Bove JM, Ayres AJ (2007) Etiology of three recent diseases of citrus in Sao Paulo State: sudden death, variegated chlorosis and huanglongbing. IUBMB Life 59:346–354

    Article  PubMed  CAS  Google Scholar 

  • Brader G, Compant G, Mitter B et al (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotech 27:30–37

    Article  PubMed  CAS  Google Scholar 

  • Brader G, Compant S, Vescio K et al (2017) Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes. Annu Rev Phytopathol 55:61–83

    Article  PubMed  CAS  Google Scholar 

  • Brotman Y, Lisec J, Meret M (2012) Transcript and metabolite analysis of the Trichoderma-induced systemic resistance response to Pseudomonas syringae in Arabidopsis thaliana. Microbiology 158:139–146

    Article  PubMed  CAS  Google Scholar 

  • Brown JKM, Hovmoller MS (2002) Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297:537–541

    Article  PubMed  CAS  Google Scholar 

  • Buee M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F (2009) 454 pyrosequencing analysis of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:449–456

    Article  PubMed  CAS  Google Scholar 

  • Burrows RL, Pflegar FL (2002a) Host responses to AMP from plots differing in plant diversity. Plant Soil 240:169–180

    Article  CAS  Google Scholar 

  • Burrows RL, Pflegar FL (2002b) Arbuscular mycorrhizal fungi respond to increasing plant diversity. Can J Bot 80:120–130

    Article  Google Scholar 

  • Cannon PF, Simmons CM (2002) Diversity and host preference of leaf endophytic fungi in the Iwokrama Forest Reserve. Guyana, Mycologia 94:210–220

    Article  Google Scholar 

  • Cannon PF, Damm U, Johnston PR, Weir BS (2012) Colletotrichum- current status and future directions. Stud Mycol 73:181–213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cao X, Xu X, Che H, West JS, Luo D (2017) Distribution and fungicide sensitivity of species complexes from rubber tree in Hainan, China. Plant Dis PDIS-03-17-0352

    Google Scholar 

  • Carney KM, Matson PA, Bohannan JM (2004) Diversity and composition of tropical soil nitrifiers across a plant diversity gradient and among land-use types. Ecol Lett 7:684–694

    Article  Google Scholar 

  • Carrell AA, Frank AC (2014) Pinus flexilis and Picea engelmannii share a sample and consistent needle endophyte microbiota and a potential role in nitrogen fixation. Fron Microbiol 5:333

    Google Scholar 

  • Carrell AA, Frank AC (2015) Bacterial endophyte communities in the foliage of coast redwood and giant sequoia. Front Microbiol 6:1008

    Article  PubMed  PubMed Central  Google Scholar 

  • Carson WP, Anderson J, Leigh EG Jr, Schnitzer SA (2008) Challenges associated with testing and falsifying the Janzen-Connell Hypothesis: a review and critique. In: Carson WP, Schnitzer SA (eds) Tropical forest community ecology. Wiley, Oxford, pp 210–241

    Google Scholar 

  • Castro RA, Quecine MC, Lacava PT et al (2014) Isolation and enzyme bioprospection of endophytic bacteria associated with plants of Brazilian mangrove ecosystem. Springer Plus 3:382

    Article  PubMed  PubMed Central  Google Scholar 

  • Chapman JW, Reynolds DR, Wilson K (2015) Long-range seasonal migration in insects: mechanisms, evolutionary drivers and ecological consequences. Ecol Lett 18:287–302

    Article  PubMed  Google Scholar 

  • Chave J (2004) Neutral theory and community ecology. Ecol Lett 7:241–253

    Article  Google Scholar 

  • Chen X, Tang J, Fang Z, Shimizu K (2004) Effects of weed communities with various species numbers on soil features in a subtropical orchard ecosystem. Agr Ecosyst Environ 102:377–388

    Article  Google Scholar 

  • Cherrett JM (1968) Foraging behaviour of Atta cephalotes L. (Hymenoptera, Formicadae). J Anim Ecol 37:387–403

    Article  Google Scholar 

  • Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Evol S 31:343–366

    Article  Google Scholar 

  • Christian N, Whitaker BK, Clay K (2015) Microbiomes: unifying animal and plant systems through the lens of community ecology theory. Front Microbiol 6:1–15

    Article  Google Scholar 

  • Christian N, Whitaker BK, Clay K (2017a) A novel framework for decoding fungal endophyte diversity. In: Dighton J, White JF (eds) The fungal community: its organization and role in the ecosystem, 4th edn. CRC Press, Boca Raton, pp 65–78

    Google Scholar 

  • Christian N, Herre EA, Mejia LC, Clay K (2017b) Exposure to the leaf litter microbiome of healthy adults protects seedlings from pathogen damage. Proc R Soc B 284:20170641

    Article  PubMed  PubMed Central  Google Scholar 

  • Chung H, Zak DR, Reich PB, Ellsworth DS (2007) Plant species richness, elevated CO2, and atmospheric nitrogen deposition alter soil microbial community composition and function. Glob Change Biol 13:980–989

    Article  Google Scholar 

  • Clark DB, Clark DA (1985) Seedling dynamics of a tropical tree: impacts of herbivory and meristem damage. Ecology 66:1884–1892

    Article  Google Scholar 

  • Clark DB, Clark DA, Read JM (1998) Edaphic variation and the mesoscale distribution of tree species in a neotropical rain forest. J Ecol 86:101–112

    Article  Google Scholar 

  • Clay K (1989) Clavicipitaceous endophytes of grasses: their potential as biocontrol agents. Mycol Res 92:1–12

    Article  Google Scholar 

  • Clay K, Holah J (1999) Fungal endophyte symbiosis and plant diversity in successional fields. Science 285:1742–1744

    Article  PubMed  CAS  Google Scholar 

  • Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:S99–S127

    Article  PubMed  Google Scholar 

  • Coblentz KE, Van Bael SA (2013) Field colonies of leaf-cutting ants select plant materials containing low abundances of endophytic fungi. Ecosphere 4:1–10

    Article  Google Scholar 

  • Coley PD, Barone JA (1996) Herbivory and plant defenses in tropical forests. Annu Rev Ecol Syst 27:305–335

    Article  Google Scholar 

  • Combes A, Ndoye I, Bance C et al (2012) Chemical communication between the endophyte fungus Paraconiothyrium variabile and the phytopathogen Fusarium oxysporum. PLoS ONE 7:e47313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Comita LS, Muller-Landau HC, Aguilar S, Hubbell SP (2010) Asymmetric density dependence shapes species abundances in a tropical tree community. Science 329:330–332

    Article  PubMed  CAS  Google Scholar 

  • Comita LS, Queenborough SA, Murphy SJ et al (2014) Testing predictions of the Janzen-Connell hypothesis: a meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival. J Ecol 102:845–856

    Article  PubMed  PubMed Central  Google Scholar 

  • Compant S, Clement C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Condit R, Ashton PS, Baker P et al (2000) Spatial patterns in the distribution of tropical tree species. Science 288:1414–1418

    Article  PubMed  CAS  Google Scholar 

  • Connell JH (1971) On the role of natural enemies in preventing competitive exclusion in some marine nimals and in rain forest trees. In: J. den Boer P, Gradwell GR (eds) Dynamics of populations. Center for Agricultural Publishing and Documentation, Wageningen, Netherlands, pp 298–312

    Google Scholar 

  • Curl EA, Truelove B (2012) The rhizosphere, 12th edn. Springer, Berlin

    Google Scholar 

  • Dalla Santa OR, Hernandez RF, Alvarez GLM (2004) Azospirillium sp. Inoculation in wheat, barley and oats seeds greenhouse experiments. Braz Arch Biol Tech 47:843–850

    Article  Google Scholar 

  • Dashiff A, Junka RA, Libera M, Kadouri DE (2011) Predation of human pathogens by the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus. Journal of Appl Microbiol 110(2):431–444

    Article  PubMed  Google Scholar 

  • Davies PJ (2010) Plant hormones; their nature, occurrence, and function. Springer, Dordrecht

    Book  Google Scholar 

  • De Bary A (1866) Morphologie und Physiologie der Pilze, Flechten, und Myxomyceten. Hofmeister’s Handbook of Physiological Botany. Vol II, Engelmannm, Leipzig, Germany

    Google Scholar 

  • Dean R, Van Kan JA, Pretorius ZA et al (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430

    Article  PubMed  PubMed Central  Google Scholar 

  • Denance N, Sanchez-Vallet A, Goffner D, Molina A (2013) Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Front Plant Sci 4:155

    Article  PubMed  PubMed Central  Google Scholar 

  • Desiro A, Faccio A, Kaech A et al (2015) Endogone, one of the oldest plant-associated fungi, host unique Mollicutes-related endobacteria. New Phytol 205:1464–1472

    Article  PubMed  CAS  Google Scholar 

  • Desoignies N, Schramme F, Ongena M, Legreve A (2013) Systemic resistance induced by Bacillus lipopeptides in Beta vulgaris reduces infection by the Rhizomania disease vector Polymyxa betae. Mol Plant Pathol 14:416–421

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847

    Article  PubMed  CAS  Google Scholar 

  • Duffy JE, Godwin CM, Cardinale BJ (2017) Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549:261–264

    Article  PubMed  CAS  Google Scholar 

  • Edwards J, Johnson C, Santos-Medllin C et al (2015) Structure, variation, and assembly of the root- associated microbiomes of rice. P Natl Acad Sci USA 112:E911–E920

    Article  CAS  Google Scholar 

  • Eisenhauer N, Milcu A, Sabais AC et al (2011) Plant diversity surpasses plant functional groups and plant productivity as driver of soil biota in the long term. PLoS ONE 6:e16055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eisenhauer N, Dobies T, Cesarz S et al (2013) Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment. P Natl Acad Sci USA 110:6889–6894

    Article  Google Scholar 

  • Ellis JG, Rafiqi M, Gan P et al (2009) Recent progress in discovery and functional analysis of effector proteins of fungal and oomycete plant pathogens. Curr Opin Plant Biol 12:399–405

    Article  PubMed  CAS  Google Scholar 

  • Estrada C, Wcislo WT, Van Bael SA (2013) Symbiotic fungi alter plant chemistry that discourages leaf-cutting ants. New Phytol 198:241–251

    Article  PubMed  Google Scholar 

  • Estrada C, Degner EC, Rojas EI et al (2015) The role of endophyte diversity in protecting plants from defoliation by leaf-cutting ants. Curr Sci 109:55–61

    Google Scholar 

  • Faeth SH, Saari S (2012) Fungal grass endophytes and arthropod communities: lessons from plant defence theory and multitrophic interactions. Fung Ecol 5:364–371

    Article  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. P Natl Acad Sci USA 103:626–631

    Article  CAS  Google Scholar 

  • Fierer N, Breitbart M, Nulton J et al (2007a) Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, Archaea, fungi, and viruses in soil. Appl Environ Microb 73:7059–7066

    Article  CAS  Google Scholar 

  • Fierer N, Bradford MA, Jackson RB (2007b) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  PubMed  Google Scholar 

  • Flores-Sanchez IJ, Verpoorte R (2009) Plant polyketide synthases: a fascinating group of enzymes. Plant Physiol Bioch 47:167–174

    Article  CAS  Google Scholar 

  • Frampton RA, Pitman AR, Fineran PC (2012) Advances in bacteriophage-mediated control of plant pathogens. Int J Microbiol 2012:326452

    Article  PubMed  PubMed Central  Google Scholar 

  • Frank AC, Saldierna Guzman JP, Shay JE (2017) Transmission of bacterial endophytes. Microorganisms 5:70

    Google Scholar 

  • Frohlich J, Hyde KD (1999) Biodiversity of palm fungi in the tropics: are global fungal diversity estimates realistic? Biodivers Conserv 8:977–1004

    Article  Google Scholar 

  • Gaiero JR, McCall CA, Thompson KA et al (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100:1738–1750

    Article  PubMed  Google Scholar 

  • Gamboa MA, Bayman P (2001) Communities of endophytic fungi in leaves of a tropical timber tree Guarea Guidonia: Meliaceae) 1. Biotropica 33:352–360

    Article  Google Scholar 

  • Gamboa MA, Laureano S, Bayman P (2003) Measuring diversity of endophytic fungi in leaf fragments: does size matter? Mycopathologia 156:41–45

    Article  Google Scholar 

  • Ganley RJ, Newcombe G (2006) Fungal endophytes in seeds and needles of Pinus monticola. Mycol Res 110:318–327

    Article  PubMed  Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390

    Article  PubMed  CAS  Google Scholar 

  • Gao C, Shi NN, Liu YX et al (2013) Host plant genus-level diversity is the best predictor of ectomycorrhizal fungal diversity in a Chinese subtropical forest. Mol Ecol 22:3403–3414

    Article  PubMed  Google Scholar 

  • Gao C, Shi NN, Chen L et al (2017) Relationships between soil fungi and woody plant assemblages differ between ridge and valley habitats in a subtropical mountain forest. New Phytol 213:1874–1885

    Article  PubMed  Google Scholar 

  • Garbeva P, Potsma J, Van Veen JA, Van Elas JD (2006) Effect of above-ground plant species on soil microbial community structure and its impact on suppression of Rhizoctonia solani AG3. Environm Microbiol 8:233–246

    Article  CAS  Google Scholar 

  • Garcia-Guzman G, Dirzo R (2001) Patterns of leaf-pathogen infection in the understory of a Mexican rain forest: incidence, spatiotemporal variation, and mechanisms of infection. Am J Bot 88:634–645

    Article  PubMed  CAS  Google Scholar 

  • Gaume L, McKey D, Terrin S (1998) Ant-plant-homopteran mutualism: how the third partner affects the interaction between a plant-specialist ant and its myrmecophyte host. P Roy Soc B-Biol Sci 265:569–575

    Article  Google Scholar 

  • Gayathri S, Saravanan D, Radhakrishnan M, Balagurunathan R, Kathiresan K (2010) Bioprospecting potential of fast growing endophytic bacteria from leaves of mangrove and salt-marsh plant species. Indian J Biotechnol 9:397–402

    Google Scholar 

  • Gentry AH (1988) Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann Mo Bot Gard 75:1–34

    Article  Google Scholar 

  • Gilbert GS (1995) Rain forest plant diseases: the canopy-understory connection. Selbyana 15:75–77

    Google Scholar 

  • Gilbert GS (2005) Dimensions of plant disease in tropical forests. In: Burslem DFRP, Pinard MA, Hartley SE (eds) Biotic interactions in the tropics. Cambridge University Press, Cambridge, pp 141–164

    Chapter  Google Scholar 

  • Gilbert GS, De Steven D (1996) A canker disease of seedlings and saplings of Tetragastris panamensis (Burseraceae) caused by Botryosphaeria dothidea in a lowland tropical forest. Plant Dis 80:684–687

    Article  Google Scholar 

  • Gilbert GS, Reynolds DR (2005) Nocturnal fungi: airborne spores in the canopy and understory of a tropical rain forest. Biotropica 37:462–464

    Article  Google Scholar 

  • Gilbert GS, Webb CO (2007) Phylogenetic signal in plant-pathogenic host range. P Natl Acad Sci USA 104:4979–4983

    Article  CAS  Google Scholar 

  • Gilbert GS, Foster RB, Hubbell SP (1994) Density and distance-to-adult effects of a canker disease of trees in a moist tropical forest. Oecologia 98:100–108

    Article  PubMed  CAS  Google Scholar 

  • Gilbert GS, Harms KE, Hamill DN, Hubbell SP (2001) Effects of seedling size, El Nino drought, seedling density, and distance to nearest conspecific adult on 6-year survival of Ocotea whitei seedlings in Panama. Oecologia 127:1502–1507

    Article  Google Scholar 

  • Gillet JB (1962) Pest pressure, an underestimated factor in evolution. In: Systematics Association Publication no. 4, Taxonomy and Geography, pp 37–46

    Google Scholar 

  • Giraldo MC, Valent B (2013) Filamentous plant pathogen effectors in action. Nat Rev Microbiol 11:800–814

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytoapthol 43:205–227

    Article  CAS  Google Scholar 

  • Gottwald TR, Irey M (2007) Post-hurricane analysis of citrus canker II: predictive model estimation of disease spread and area potentially impacted by various eradication protocols following catastrophic weather events. Plant Health Progress. https://doi.org/10.1094/php-2007-0405-01rs

    Article  Google Scholar 

  • Gottwald TR, Graham JH, Schubert TS (2002) Citrus canker: the pathogen and its impact. Plant Health Progress. https://doi.org/10.1094/php-2002-0812-01-rv

    Article  Google Scholar 

  • Gourion B, Berrabah F, Ratet P, Stacey G (2015) Rhizobium-legume symbioses: the crucial role of plant immunity. Trends Plant Sci 20:186–194

    Article  PubMed  CAS  Google Scholar 

  • Graham JH, Gottwald TR, Cubero J, Achor DS (2004) Xanthomonas axonopodis pv.citri: factors affecting successful eradication of citrus canker. Mol Plant Pathol 5:1–15

    Article  PubMed  Google Scholar 

  • Griffin EA (2016) The greater unseen: on the identities, distributions, and impacts of foliar bacteria on tropical arboreal species. PhD thesis, University of Pittsburgh, Pittsburgh

    Google Scholar 

  • Griffin EA, Carson WP (2015) The ecology and natural history of foliar bacteria with a focus on tropical forests and agroecosystems. Bot Rev 81:105–149

    Article  Google Scholar 

  • Griffin EA, Traw MB, Morin PJ et al (2016) Foliar bacteria and soil fertility mediate seedling performance: a new and cryptic dimension of niche differentiation. Ecology 97:2998–3008

    Article  PubMed  Google Scholar 

  • Griffin EA, Wright SJ, Morin PJ, Carson WP (2017) Pervasive interactions between foliar microbes and soil nutrients mediate leaf production and herbivore damage in a tropical forest. New Phytol 216:99–112

    Article  PubMed  Google Scholar 

  • Gunatilaka AL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69:509–526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gutierrez-Manero FJ, Ramos-Solano B, Probanza A et al (2001) The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211

    Article  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Hamilton AJ, Basset Y, Benke KK et al (2010) Quantifying uncertainty in estimation of tropical arthropod species richness. Am Nat 176:90–95

    Article  PubMed  Google Scholar 

  • Hammer TJ, Van Bael SA (2015) An endophyte-rich diet increases ant predation on a specialist herbivorous insect. Ecol Entomol 40:316–321

    Article  Google Scholar 

  • Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  PubMed  CAS  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G et al (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol R 79:293–320

    Article  Google Scholar 

  • Harms KE, Condit R, Hubbell SP, Foster RB (2001) Habitat associations of trees and shrubs in a 50- ha Neotropical forest plot. J Ecol 89:947–959

    Article  Google Scholar 

  • Hausmann NT, Hawkes CV (2009) Plant neighborhood control of arbuscular mycorrhizal community composition. New Phytol 183:1188–1200

    Article  PubMed  Google Scholar 

  • He J, Tedersoo L, Hu A et al (2017) Greater diversity of soil fungal communities and distinguishable seasonal variation in temperate deciduous forests compared with subtropical evergreen forests of eastern China. FEMS Microbiol Ecol 93:fix069

    Google Scholar 

  • Hedin LO, Brookshire EJ, Menge DN, Barron AR (2009) The nitrogen paradox in tropical forest ecosystems. Annu Rev of Ecol Evol S 40:613–635

    Article  Google Scholar 

  • Heil M, McKey D (2003) Protective ant-plant interactions as model systems in ecological and evolutionary research. Annu Rev Ecol Evol S 34:425–553

    Article  Google Scholar 

  • Henis Y, Bashan Y (1986) Epiphytic survival of bacterial leaf pathogens. In: Fokkema NJ, van den Heuvel J (eds) Microbiology of the phyllosphere. Cambridge University Press, New York, pp 252–268

    Google Scholar 

  • Higgins KL, Arnold AE, Miadlikowska J et al (2007) Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages. Mol Phylogenet Evol 42:543–555

    Article  PubMed  CAS  Google Scholar 

  • Hiiesalu I, Partel M, Davidson J et al (2014) Species richness of arbuscular mycorrhizal fungi: associations with grasslands plant richness and biomass. New Phytol 203:233–244

    Article  PubMed  CAS  Google Scholar 

  • Hiiesalu I, Bahram M, Tedersoo L (2017) Plant species richness and productivity determine the diversity of soil fungal guilds in temperate coniferous forest and bog habitats. Mol Ecol 26:4846–4858

    Article  PubMed  Google Scholar 

  • Hill DS, Waller JM (1982) Pests and disease of tropical crops. Longman, London

    Google Scholar 

  • Hodgson S, Cates C, Hodgson J et al (2014) Vertical transmission of fungal endophytes is widespread in forbs. Ecol Evol 4:1199–1208

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoffman MT, Gunatilaka MK, Wijeratne K et al (2013) Endohyphal bacterium enhances production of indole-3-acetic acid by a foliar fungal endophyte. PLoS ONE 8:e73132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Holldobler B, Wilson EO (2010) The leafcutter ants: civilization by instinct. WW Norton and Company Inc, New York

    Google Scholar 

  • Hooper DU, Bignell DE, Brown VK et al (2000) Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks: we assess the evidence for correlation between aboveground and belowground diversity and conclude that a variety of mechanisms could lead to positive, negative, or no relationship-developing on the strength and type of interactions among species. AIBS Bulletin 50:1049–1061

    Google Scholar 

  • Horn S, Hempel S, Verbruggen E et al (2017) Linking the community structure of arbuscular mycorrhizal fungi and plants: a story of interdependence? ISME J 11:1400–1411

    Article  PubMed  PubMed Central  Google Scholar 

  • Horst RK (1990) Westcott’s plant disease handbook, 5th edn. Chapman and Hall, New York

    Book  Google Scholar 

  • Hubbell SP (2001) The unified theory of biogeography and biodiversity. University Press, Princeton

    Google Scholar 

  • Hubbell SP, Foster RB, O’Brien ST et al (1999) Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science 283:554–557

    Article  PubMed  CAS  Google Scholar 

  • Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 163:e73

    Google Scholar 

  • Hyde KD, Cai L, McKenzie EHC et al (2009) Colletotrichum: a catalogue of confusion. Fungal Divers 39:1–17

    Google Scholar 

  • Innerebner G, Knief C, Vorholt JA (2011) Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl Environ Microb 77:3202–3210

    Article  CAS  Google Scholar 

  • Irey M, Gottwald TR, Graham JH et al (2006) Post-hurricane analysis of citrus canker spread and progress towards the development of a predictive model to estimate disease spread due to catastrophic weather events. Plant Health Progress. https://doi.org/10.1094/php-2006-0822-01-rs

    Article  Google Scholar 

  • Jaber LR, Vidal S (2010) Fungal endophyte negative effects on herbivory are enhanced on intact plants and maintained in a subsequent generation. Ecol Entomol 35:25–36

    Article  Google Scholar 

  • Jackson RW (2009) Plant pathogenic bacteria: genomic and molecular biology. Horizon Scientific Press

    Google Scholar 

  • Jackson RB, Mooney HA, Schulze ED (1997) A global budget for fine root biomass, surface area, and nutrient contents. P Natl Acad Sci USA 94:7362–7366

    Article  CAS  Google Scholar 

  • Janzen DH (1966) Coevolution of mutualism between ants and acacias in Central America. Evolution 20:249–275

    Article  PubMed  Google Scholar 

  • Janzen DH (1970) Herbivores and the number of tree species in tropical forests. Am Nat 104:501–528

    Article  Google Scholar 

  • Ji P, Wilson M (2002) Assessment of the importance of similarity in carbon source utilization profiles between the biological control agent and the pathogen in biological control of bacterial speck of tomato. Appl Environ Microb 68:4383–4389

    Article  CAS  Google Scholar 

  • Jiang RHY, Tyler BM (2012) Mechanisms and evolution of virulence in oomycetes. Annu Rev Phytopathol 50:295–318

    Article  PubMed  CAS  Google Scholar 

  • Johnson NC, Graham JH (2013) The continuum concept remains a useful framework for studying mycorrhizal functioning. Plant Soil 363:411–419

    Article  CAS  Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualist-parasitism continuum. New Phytol 135:575–585

    Article  Google Scholar 

  • Johnson D, Vandenkoornhuyse PJ, Leake JR et al (2003) Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytol 161:503–515

    Article  PubMed  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  PubMed  CAS  Google Scholar 

  • Kembel SW, O’Conner TK, Arnold HK et al (2014) Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. P Natl Acad Sci USA 111:13715–13720

    Article  CAS  Google Scholar 

  • Kernaghan G, Widden P, Bergeron Y et al (2003) Biotic and biotic factors affecting ectomycorrhizal diversity in boreal mixed-woods. Oikos 102:497–504

    Article  Google Scholar 

  • Kitajima K, Augspurger CK (1989) Seed and seedling ecology of a monocarpic tropical tree, Tachigalia versicolor. Ecology 70:1102–1114

    Article  Google Scholar 

  • Kitajima K, Poorter L (2008) Functional basis for resource niche partitioning by tropical trees. In: Carson WP, Schnitzer SA (eds) Tropical Forest Community Ecology, pp 160–181

    Google Scholar 

  • Kivlin SN, Hawkes CV (2011) Differentiating between effects of invasion and diversity: impacts of aboveground plant communities on belowground fungal communities. New Phytol 189:526–535

    Article  PubMed  Google Scholar 

  • Kivlin SN, Hawkes CV (2016a) Tree species, spatial heterogeneity, and seasonality drive soil fungal abundance, richness, and composition in Neotropical rainforests. Environ Microbiol 18:4662–4673

    Article  PubMed  Google Scholar 

  • Kivlin SN, Hawkes CV (2016b) Tree species, spatial heterogeneity, and seasonality drive soil fungal abundance, richness, and composition in Neotropical rainforests. Environm Microbiol 18:4662–4673

    Article  Google Scholar 

  • Kogel KH, Franken P, Huckelhoven R (2006) Endophyte or parasite—what decides? Curr Opin Plant Biol 9:358–363

    Article  PubMed  Google Scholar 

  • Konig S, Wubet T, Dormann CF et al (2010) TaqMan real-time PCR assays to assess arbuscular mycorrhizal responses to field manipulation of grassland biodiversity: effects of soil characteristics, plant species richness, and functional traits. Appl Environ Microbiol 76:3765–3775

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kowalchuk GA, Buma DS, de Boer W et al (2002) Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Antonie Van Leeuwenhoek 815:509–520

    Article  Google Scholar 

  • Krugner R, Lopes MDC, Santos JD et al (2000) Transmission efficiency of Xylella fastidiosa to citrus by sharpshooters and identification of two new vector species. In: Conference of international organization of citrus virologists, vol 14, p 423

    Google Scholar 

  • Kuldau G, Bacon C (2008) Clavivipitaceous endophytes: their ability to enhance resistance of grasses to multiple stresses. Biol Control 46:57–71

    Article  Google Scholar 

  • Kuzyakov Y, Domanski G (2000) Carbon input by plants into the soil. J Plant Nutr Soil Sci 163:421–431

    Article  CAS  Google Scholar 

  • Laforest-Lapointe I, Paquette A, Messier C, Kembel SW (2017) Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature 546:145–147

    Article  PubMed  CAS  Google Scholar 

  • LaManna JA, Mangan SA, Alonso A et al (2017) Plant diversity increases with the strength of negative density dependence at the global scale. Science 356:1389–1392

    Article  PubMed  CAS  Google Scholar 

  • Lambais MR, Crowley DE, Cury JC et al (2006) Bacterial diversity in tree canopies of the Atlantic forest. Science 312:1917--1917

    Article  Google Scholar 

  • Lambais MR, Lucheta AR, Crowley DE (2014) Bacterial community assemblages associated with the phyllosphere, dermosphere, and rhizosphere of tree species of the Atlantic forest are host taxon dependent. Microb Ecol 68:567–574

    Article  PubMed  Google Scholar 

  • Lambais MR, Barrera SE, Santos EC et al (2017) Phyllosphere metaproteomes of trees from the Brazilian Atlantic forest show high levels of functional redundancy. Microb Ecol 73:123–134

    Article  PubMed  CAS  Google Scholar 

  • Landis FC, Gargas A, Givnish TJ (2004) Relationships among arbuscular mycorrhizal fungi, vascular plants and environmental conditions in oak savannas. New Phytol 164:493–504

    Article  Google Scholar 

  • Lange M, Eisenhauer N, Sierra CA et al (2015) Plant diversity increases soil microbial activity and soil carbon storage. Nature Comm 6:6707

    Article  CAS  Google Scholar 

  • Lefcheck JS, Byrnes JE, Isbell F et al (2015) Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat Comm 6:6936

    Article  CAS  Google Scholar 

  • Lennon JT, Jones SE (2011) Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol 9:119–130

    Article  PubMed  CAS  Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microb 69:1875–1883

    Article  CAS  Google Scholar 

  • Lindow SE, Desurmont C, Elkins R et al (1998) Occurrence of indole-3-acetic acid-producing bacteria on pear trees and their association with fruit russet. Phytopathology 88:1149–1157

    Article  PubMed  CAS  Google Scholar 

  • Llado S, Lopez-Mondejar R, Baldrian P (2017) Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiol Mol Biol R 81:e00063--16

    Article  Google Scholar 

  • Lodge D, Hawksworth DL, Ritchie BJ (1996) Microbial diversity and tropical forest functioning. Biodiversity and ecosystem processes in tropical forests. Springer, Berlin Heidelberg, pp 69–100

    Chapter  Google Scholar 

  • Lopes JRS, Krugner R, Brown J (2016) Transmission ecology and epidemiology of the citrus variegated chlorosis strain of Xylella fastidiosa. In: Brown JK (ed) Vector-mediated transmission of plant pathogens. APS Press, pp 195–208

    Google Scholar 

  • Loranger-Merciris G, Barthes L, Gastine A, Leadley P (2006) Rapid effects of plant species diversity and identity on soil microbial communities in experimental grassland ecosystems. Soil Biol Biochem 38:2336–2343

    Article  CAS  Google Scholar 

  • Ludwig-Muller J (2015) Plants and endophytes: equal partners in secondary metabolite production? Biotechnol Lett 37:1325–1334

    Article  PubMed  CAS  Google Scholar 

  • Ma B, Hibbing ME, Kim H-S et al (2007) Host range and molecular phylogenies of the soft rot Enterobacterial genera Pectobacterium and Dickeya. Phytopathology 97:1150–1163

    Article  PubMed  Google Scholar 

  • Malcolm GM, Kuldau GA, Gugino BK, Jimenez-Gasco MDM (2013) Hidden host plant associations of soilbourne fungal pathogens: an ecological perspective. Phytopathology 103:538–544

    Article  PubMed  CAS  Google Scholar 

  • Mandyam KG, Roe J, Jumpponen A (2014) Mutualism-parasitism paradigm synthesized from results of root-endophyte models. Front Microbiol 5:776

    PubMed  Google Scholar 

  • Mangan SA, Schnitzer SA, Herre EA et al (2010) Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466:752–755

    Article  PubMed  CAS  Google Scholar 

  • Mansfield J, Genin S, Magori S et al (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13:614–629

    Article  PubMed  PubMed Central  Google Scholar 

  • Maor R, Haskin S, Levi-Kedmi H, Sharon A (2004) In planta production of indole-3-acetic acid by Colletotrichum gloeosporioides f. sp. aeschynomene. Appl Environ Microbiol 70:1852–1854

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marcelino J, Giordano R, Gouli S et al (2008) Colletrtrichum acutatum var. fioriniae (telemorph: Glomerella acutata var. fioriniae var. nov.) infection of a scale insect. Mycologia 100:353–374

    Article  PubMed  CAS  Google Scholar 

  • Marquez SS, Bills GF, Herrero N, Zabalgogeazcoa I (2012) Non-systemic fungal endophytes of grasses. Fungal Endophyes 5:289–297

    Article  Google Scholar 

  • Mathimaran N, Ruh R, Jama B et al (2007) Impact of agricultural management on arbuscular mycorrhizal fungal communities in Kenyan ferralsol. Agr Ecosyst Environ 119:22–32

    Article  Google Scholar 

  • May RM (1988) How many species are there on earth? Science 241:1441–1449

    Article  PubMed  CAS  Google Scholar 

  • May RM (1990) How many species? Philos Trans Biol Sci 330:293–304

    Article  Google Scholar 

  • Mejia LC, Rojas EI, Maynard Z et al (2008) Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. Biol Control 46:4–14

    Article  Google Scholar 

  • Mejia LC, Herre EA, Sparks JP et al (2014) Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree. Front Microbiol 5:479

    PubMed  PubMed Central  Google Scholar 

  • Mellotto M, Underwood W, Koczan J et al (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980

    Article  CAS  Google Scholar 

  • Mellotto M, Underwood W, He SY (2008) Role of stomata in plant innate immunity and foliar bacterial diseases. Annu Rev Phytoapthol 46:101–122

    Article  CAS  Google Scholar 

  • Mercado-Blanco J, Prieto P (2012) Bacterial endophytes and root hairs. Plant Soil 361:301–306

    Article  CAS  Google Scholar 

  • Meyer KM, Leveau JHJ (2012) Microbiology of the phyllosphere: a playground for testing ecological concepts. Oecologia 168:621–629

    Article  PubMed  Google Scholar 

  • Milcu A, Allan E, Roscher C et al (2013) Functionally and phylogenetically diverse plant communities key to soil biota. Ecology 94:1878–1885

    Article  PubMed  Google Scholar 

  • Mirzaei J, Moradi M (2017) Relationships between flora biodiversity, soil physiochemical properties, and arbuscular mycorrhizal fungi (AMF) diversity in a semi-arid forest. Plant Ecol Evol 150(2):151–159

    Article  Google Scholar 

  • Mordecai EA (2011) Pathogen impacts on plant communities: unifying theory, concepts, and empirical work. Ecol Monogr 81:429–441

    Article  Google Scholar 

  • Morris CE, Monteil CL, Berge O (2013) The life history of Pseudomonas syringae: linking agriculture to earth system processes. Annu Rev Phytopathol 51:85–104

    Article  PubMed  CAS  Google Scholar 

  • Moyes AB, Kueppers LM, Pett-Ridge J et al (2016) Evidence of foliar endophytic nitrogen fixation in a widely distributed subalpine conifer. New Phytol 210:657–668

    Article  PubMed  CAS  Google Scholar 

  • Murali TS, Suryanarayanan TS, Geeta R (2006) Endophytic Phomopsis species: host range and implications for diversity estimates. Can J Microbiol 52:673–680

    Article  PubMed  CAS  Google Scholar 

  • Negus D, Moore C, Baker M, Raghunathan D, Tyson J, Sockett RE (2017) Killing Gram-negative pathogens in a host setting? Annu Rev Microbiol 71:441–457

    Article  PubMed  CAS  Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR (1994) Root pathogenic and arbuscular mycorrhizal fungi determine fecundity of asymptomatic plants in the field. J Ecol 82:805–814

    Article  Google Scholar 

  • Nisa H, Kamili AN, Nawchoo IA et al (2015) Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: a review. Microb Pathogenesis 82:50–59

    Article  CAS  Google Scholar 

  • Nunan N, Daniell TJ, Singh BK et al (2005) Links between rhizoplane bacterial communities in grassland soils, characterized using molecular technologies. Appl Environm Microbiol 71:6784–6792

    Article  CAS  Google Scholar 

  • Ohm RA, Feau N, Henrissat B, Schoch CL, Horwitz BA, Barry KW, Condon BJ, Copeland AC, Dhillon B, Glaser F, Hesse SN (2012) Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen Dothideomycetes fungi. PLoS Pathog 8:e1003037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oliver TH, Heard MS, Isaac NJ et al (2015) Biodiversity and resilience of ecosystem functions. Trends Ecol Evol 11:673–684

    Article  Google Scholar 

  • Opik M, Moora M, Liira J, Zobel M (2006) Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J Ecol 94:778–790

    Article  Google Scholar 

  • Pajares S, Bohannan BJ (2016) Ecology of nitrogen fixing, nitrifying, and denitrifying microorganisms in tropical forest soils. Front Microbiol 7:1045

    PubMed  PubMed Central  Google Scholar 

  • Partida-Martinez LP, Hertweck C (2005) Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437:884–888

    Article  PubMed  CAS  Google Scholar 

  • Partida-Martinez LP, Groth I, Schmitt I et al (2007a) Burkholderia rhizoxinica sp. nov. and Burkholderia endofungorum sp. nov., bacterial endosymbionts of the plant-pathogenic fungus Rhizopus microspores. Int J Syst Evol Micr 57:2583–2590

    Article  CAS  Google Scholar 

  • Partida-Martinez LP, Monajembashi S, Greulich K-O, Hertweck C (2007b) Endosymbiont-dependent host reproduction maintains bacterial-fungal mutualism. Curr Biol 17:773–777

    Article  PubMed  CAS  Google Scholar 

  • Pawlowski J, Audic S, Adl S et al (2012) CBOL protest working group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biol 10:e1001419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peay KG, Kennedy PG, Davies SJ et al (2010) Potential link between plant and fungal distributions in a dipterocarp rainforest: community and phylogenetic structure of tropical ectomycorrhizal fungi across a plant and soil ecotone. New Phytol 185:529–542

    Article  PubMed  CAS  Google Scholar 

  • Peay KG, Baraloto C, Fine PV (2013) Strong coupling of plant and fungal community structure across western Amazonian rainforests. ISME J 7 (9):1852–1861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. Microbial ecology of leaves. Springer, New York, pp 179–197

    Chapter  Google Scholar 

  • Phillips RP, Finzi AC, Bernhardt ES (2011) Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol Lett 14:187–194

    Article  PubMed  Google Scholar 

  • Pieterse CM, Zamioudis C, Berendsen RL et al (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    Article  PubMed  CAS  Google Scholar 

  • Pineda A, Zheng SJ, van Loon JJ et al (2010) Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends Plant Sci 15:507–514

    Article  PubMed  CAS  Google Scholar 

  • Pires DP, Cleto S, Sillankorva S, Azaredo J, Lu TK (2016) Genetically engineered phages: a review of advances over the last decade. Microbiol Mol Biol Rev 80:523–543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Porazinska DL, Bardgett RD, Blaauw MB et al (2003) Relationships at the above-ground-belowground interface: plants, soil biota, and soil processes. Ecol Monog 73:377–395

    Article  Google Scholar 

  • Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol 49:291–315

    Article  PubMed  CAS  Google Scholar 

  • Prober SM, Leff JW, Bates ST et al (2015) Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecol Lett 18:85–95

    Article  PubMed  Google Scholar 

  • Prusky D (1996) Pathogen quiescence in postharvest harvest. Annu Rev Phytol 34:413–434

    Article  CAS  Google Scholar 

  • Purcell AH, Finlay AH, McLean DL (1979) Pierce’s disease bacterium: mechanism of transmission by leafhopper vectors. Science 206:839–841

    Article  PubMed  CAS  Google Scholar 

  • Ramos Solano B, Barriuso Maicas J, Pereyra De La Iglesia MT et al (2008) Systemic disease protection elicited by plant growth promoting rhizobacteria strains: relationship between metabolic responses, systemic disease protection, and biotic elicitors. Phytopathology 98:451–457

    Article  PubMed  CAS  Google Scholar 

  • Redak RA, Purcell AH, Lopes JRS et al (2004) The biology of xylem fluid-feeding insect vectors of Xylella fastidiosa and their relation to disease epidemiology. Annu Rev Entomol 49:243–270

    Article  PubMed  CAS  Google Scholar 

  • Reinhold-Hurek B, Hurek T (1998) Life in grasses: diazotrophic endophytes. Trends Microbiol 6:139–144

    Article  PubMed  CAS  Google Scholar 

  • Robinson M, Riov J, Sharon A (1998) Indole-3-acetic acid biosynthesis in Colletotrichum gloeosporioides f. sp. aeschynomene. Appl Environ Microbiol 64:5030–5032

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rockwood LL (1976) Plant selection and foraging patterns in two species of leaf-cutting ants (Atta). Ecology 57:48–61

    Article  Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  PubMed  CAS  Google Scholar 

  • Rojas EI, Rehner SA, Samuels GJ et al (2010) Colletotrichum gloeosporioides sl associated with Theobroma cacao and other plants in Panama: multilocus phylogenies distinguish host-associated pathogens from asymptomatic endophytes. Mycologia 102:1318–1338

    Article  PubMed  Google Scholar 

  • Rousk J, Baath E, Brookes PC et al (2010) Soil bacteria and fungal communities across a pH gradient in an arable soil. The ISME J 4:1340–1351

    Article  PubMed  Google Scholar 

  • Rudgers JA, Clay K (2007) Endophyte symbiosis with tall fescue: how strong are the impacts on communities and ecosystems? Fungal Biol Rev 21:107–124

    Article  Google Scholar 

  • Ryan RP, Vorholter FJ, Potnis N (2011) Pathogenomics of Xanthomonas: understanding bacterium-plant interactions. Nat Rev Microbiol 9:344–355

    Article  PubMed  CAS  Google Scholar 

  • Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev of Ecol S 29:319–343

    Article  Google Scholar 

  • Saikkonen K, Wali P, Helander M, Faeth SH (2004) Evolution of endophyte-plant symbioses. Trends Plant Sci 9:275–280

    Article  PubMed  CAS  Google Scholar 

  • Saikkonen K, Saari S, Helander M (2010) Defensive mutualism between plants and endophytic fungi? Fungal Divers 41:101–113

    Article  Google Scholar 

  • Salvioli A, Chiapello M, Fontaine J et al (2010) Endobacteria affect the metabolic profile of their host Gigaspora margarita, and arbuscular myccorhizal fungus. Environ Microbiol 12:2083–2095

    PubMed  CAS  Google Scholar 

  • Salvioli A, Ghignone S, Novero M et al (2016) Symbiosis with an endobacterium increases the fitness of a mycorhhizal fungus, raising its bioenergentic potential. ISME J 10:130–144

    Article  PubMed  CAS  Google Scholar 

  • Santoyo G, Moredno-Hagelsieb G, del Carmen Orozco-Mosqueda M, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99

    Article  PubMed  CAS  Google Scholar 

  • Sarkar S, Guttman DS (2004) Evolution of the core genome of Pseudomonas syringae, a highly clonal, endemic plant pathogen. Appl Environ Microb 70:1999–2012

    Article  CAS  Google Scholar 

  • Sarmiento C, Zalamea P-C, Dalling JW et al (2017) Soilborne fungi have host affinity and host-specific effects on seed germination and survival in a lowland tropical forest. P Natl Acad Sci 14:11458–11463

    Article  Google Scholar 

  • Sato Y, Narisawa K, Tsuruta K et al (2010) Detection of Betaproteobacteria inside the mycelium of the fungus Mortierella elongate. Microbes Environ 25:321–324

    Article  PubMed  Google Scholar 

  • Scardaci SC, Webster RK, Greer CA et al (1997) Rice blast: a new disease in California, Agronomy Fact, Department of Agronomy and Range Science, University of California, Davis, Sheet Series, 1997–2

    Google Scholar 

  • Schappe T, Albornoz FE, Turner BL et al (2017) The role of soil chemistry and plant neighbourhoods in structuring fungal communities in three Panamanian rainforests. J Ecol 105:569–579

    Article  Google Scholar 

  • Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340

    Article  PubMed  CAS  Google Scholar 

  • Schellenber B, Ramel C, Dudler R (2010) Pseudomonas syringae virulence factor syringolin A counteracts stomatal immunity by proteasome inhibition. Mol Plant-Microbe In 23:1287–1293

    Article  CAS  Google Scholar 

  • Schlatter DC, Bakker MG, Bradeen JM, Kinkel LL (2015) Plant community richness and microbial interactions structure bacterial communities in soil. Ecology 96:134–142

    Article  PubMed  Google Scholar 

  • Schleuning M, Frund J, Garcia D (2015) Predicting ecosystem functions from biodiversity and mutualistic networks: an extension of trait-based concepts to plant-animal interactions. Ecography 38:380–392

    Article  Google Scholar 

  • Schloss PD, Handelsman J (2006) Toward a census of bacteria in soil. PLoS Comput Biol 2:e92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmelz EA, Engelbert J, Alborn HT et al (2003) Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. P Natl Acad Sci USA 100:10552–10557

    Article  CAS  Google Scholar 

  • Schultz B, Boyle C, Draeger S et al (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycolog Res 106:996–1004

    Article  CAS  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    Article  PubMed  Google Scholar 

  • Schulz B, Coyne DP (2006) What are endophytes? In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, pp 1–13

    Chapter  Google Scholar 

  • Shaffer JP, Sarmiento C, Zalamea PC et al (2016) Diversity, specificity, and phylogenetic relationships of endophyphal bacteria in fungi that inhabit tropical seeds and leaves. Front Ecol Evol 4:116

    Article  Google Scholar 

  • Sharma M, Schmid M, Rothballer M et al (2008) Detection and identification of bacteria intimately associated with fungi in the order Sebacinales. Cell Microbiol 10:2235–2246

    Article  PubMed  CAS  Google Scholar 

  • Shivas RG, Hyde KD (1997) Biodiversity of plant pathogenic fungi in the tropics. Biodiversity of tropical microfungi. Hong Kong University Press, Hong Kong, pp 47–56

    Google Scholar 

  • Silby MW, Winstanley C, Godfrey SAC et al (2011) Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev 35:652–680

    Article  PubMed  CAS  Google Scholar 

  • Silvertown J (2004) Plant coexistence and the niche. Trends Ecol Evol 19:605–611

    Article  Google Scholar 

  • Sockett RE (2009) Predatory lifestyle of Bdellovibrio bacteriovorus. Annu Rev Microb 63:523–539

    Article  CAS  Google Scholar 

  • Sorensen J, Sessitsch A (2007) Plant-associated bacteria-lifestyle and molecular interactions. Modern Soil Microbiology CRC Press LLC

    Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetoc acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  PubMed  CAS  Google Scholar 

  • Stephan A, Meyer AH, Schmid B (2000) Plant diversity affects culturable soil bacteria in experimental grassland communities. J Ecol 88:988–998

    Article  Google Scholar 

  • Stergiopoulos I, de Wit PJ (2009) Fungal effector proteins. Annu Rev Phytopathol 47:233–263

    Article  PubMed  CAS  Google Scholar 

  • Stone JK, Bacon CW, White JF (2000) An overview of endophytic microbes: endophytism defined. Microb endophy 3:29–33

    Google Scholar 

  • Stork NE, McBroom J, Gely C, Hamilton AJ (2015) New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods. P Natl Acad Sci USA 112:7519–7523

    Article  CAS  Google Scholar 

  • Strack D, Fester T, Hause B et al (2003) Arbuscular mycorrhiza: biological, chemical, and molecular aspects. J Chem Ecol 29:1955–1979

    Article  PubMed  CAS  Google Scholar 

  • Strobel G (2012) Genetic diversity of microbial endophytes and their biotechnical applications. Genomics applications for the developing world. Springer, New York, pp 249–262

    Chapter  Google Scholar 

  • Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268

    Article  PubMed  CAS  Google Scholar 

  • Suryanarayanan TS, Murali TS, Venkatesan G (2002) Occurrence and distribution of fungal endophytes in tropical forests across a rainfall gradient. Can J Bot 80:818–826

    Article  Google Scholar 

  • Suryanarayanan TS, Venkatesan G, Murali TS (2003) Endophytic fungal communities in leaves of tropical forest trees: diversity and distribution patterns. Current Sci 85:489–493

    Google Scholar 

  • Suryanarayanan TS, Murali TS, Thirunavukkarasu N et al (2011) Endophytic fungal communities in woody perennials of three tropical forest types of the Western Ghats, southern India. Biodivers Conserv 20:913–928

    Article  Google Scholar 

  • Tanaka A, Takemoto D, Chuji T, Scott B (2012) Fungal endophytes of grasses. Curr Opin Plant Biol 15:462–468

    Article  PubMed  CAS  Google Scholar 

  • Tedersoo L, Bahram M, Cajthaml T et al (2016) Tree diversity and species identity effects on soil fungi, protists and animals are context dependent. ISME J 10:346–362

    Article  PubMed  CAS  Google Scholar 

  • Thines M (2014) Phylogeny and evolution of plant pathogenic oomycetes—a global overview. Eur J Plant Pathol 138:431–447

    Article  Google Scholar 

  • Thompson GL, Kao-Kniffin J (2016) Diversity enhances NPP, N retention, and soil microbial diversity in experimental urban grassland assemblages. PLoS ONE 11:e0155986

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thurston HD (1998) Tropical plant diseases, 2nd edn. American Phytopathological Society, St. Paul, MN

    Google Scholar 

  • Tiemann LK, Grandy AS, Atkinson EE et al (2015) Ecol Lett 18:761–771

    Article  PubMed  CAS  Google Scholar 

  • Tilman D (2016) Biodiversity: from evolutionary origins to ecosystem functioning. Contr Sci 11:11–20

    Google Scholar 

  • Tilman D, Isbell F, Cowles JM (2014) Biodiversity and ecosystem function. Annu Rev Ecol Evol S 45:471–493

    Article  Google Scholar 

  • Torsvik V, Ovrea L, Thingstad TF (2002) Prokaryotic diversity—magnitude, dynamics, and controlling factors. Science 296:1064–1066

    Article  PubMed  CAS  Google Scholar 

  • Tortora GJ, Funke BR, Case CL, Johnson TR (2016) Microbiology: an introduction, 12th ed. Pearson Education, Inc

    Google Scholar 

  • Tran H, Ficke A, Asiimwe T et al (2007) Role of the cyclic lipopeptide massetolide A in biological control of Phyphthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytol 175:731–742

    Article  PubMed  CAS  Google Scholar 

  • Tripathi L, Mwangi M, Abele S et al (2009) Xanthomonas wilt: a threat to banana production in East and Central Africa. Plant Dis 93:440–451

    Article  PubMed  Google Scholar 

  • Truyens S, Weyens N, Cuypers A, Vangronsveld J (2015) Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Env Microbiol Rep 7:40–50

    Article  Google Scholar 

  • Urcelay C, Diaz S, Gurvich DE et al (2009) Mycorrhizal community resilience to experimental plant functional type removals in a woody ecosystem. J Ecol 97:1291–1301

    Article  Google Scholar 

  • Van Bael SA, Valencia MC, Rojas EI et al (2009) Effects of foliar endophytic fungi on the preference and performance of the leaf beetle Chelymorpha alternans in Panama. Biotropica 41:221–225

    Article  Google Scholar 

  • Van Bael SA, Seid MA, Wcislo WT (2012) Endophytic fungi increase the processing rate of leaves by leaf-cutting ants (Atta). Ecol Entomol 37:318–321

    Article  Google Scholar 

  • Van Bael S, Estrada C, Arnold AE (2017) Foliar endophyte communities and leaf traits in tropical trees. In: Dighton J, White JF (eds) The fungal community: its organization and role in the ecosystem, 4th edn. CRC Press, Boca Raton, pp 79–92

    Google Scholar 

  • Van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS 417 r. Phytopathology 81:728–734

    Article  Google Scholar 

  • Velicer GJ, Vos M (2009) Sociobiology of the myxobacteria. Annu Rev Microbiol 63:599–623

    Article  PubMed  CAS  Google Scholar 

  • Verhagen BW, Trotel-Aziz P, Couderchet M et al (2010) Pseudomonas spp.-induced systemic resistance to Botrytis cinerea is associated with induction and priming of defence responses in grapevine. J Exp Bot 61:249–260

    Article  PubMed  CAS  Google Scholar 

  • Vitousek PM, Menge DNL, Reed SC, Cleveland CC (2013) Biological nitrogen fixation: rates, patterns, and ecological controls in terrestrial ecoystems. Phil Trans R Soc B 368:20130119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840

    Article  PubMed  CAS  Google Scholar 

  • Waksman SA, Schatz A, Reynolds DM (2010) Production of antibiotic substances by actinomycetes. Ann New York Acad Sci 1213:112–124

    Article  Google Scholar 

  • Waldrop MP, Zak DR, Blackwood CB et al (2006) Resource availability controls fungal diversity across a plant diversity gradient. Ecol Lett 9:1127–1135

    Article  PubMed  Google Scholar 

  • Wang J, Chapman SJ, Yao H (2016) Incorporation of 13 C-labelled rice rhizodeposiition into soil microbial communities under different fertilizer applications. Appl Soil Ecol 101:11–19

    Article  Google Scholar 

  • Wardle DA, Bonner KI, Barker GM et al (1999) Plant removals in perennial grassland: vegetation dynamics, decomposers, soil biodiversity, and ecosystem properties. Ecol Monog 69:535–568

    Article  Google Scholar 

  • Wardle DA, Yeates GW, Williamson W, Bonner KI (2003) The response of a three trophic level soil food web to the identity and diversity of plant species and functional groups. Oikos 102:45–56

    Article  Google Scholar 

  • Wellman FL (1968) More disease on crops in the tropics than in the temperate zone. Ceiba 14:17–28

    Google Scholar 

  • Wellman FL (1972) Tropical American plant disease. The Scarecrow Press Inc., Metuchen, NJ

    Google Scholar 

  • Werth M, Kuzyakov Y (2010) 13C fractionation at the root-microorganisms-soil interface: a review and outlook for partitioning studies. Soil Biol Biochem 42:1372–1384

    Article  CAS  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. P Natl Acad Sci USA 95:6578–6583

    Article  Google Scholar 

  • Willey J, Sherwood L, Woolverton CJ (2016) Prescott’s microbiology, 10th edn. McGraw-Hill Education, New York

    Google Scholar 

  • Wilson D (1995) Endophyte: the evolution of the term, and clarification of its use and definition. Oikos 73:274–276

    Article  Google Scholar 

  • Wilson M, Lindow SE (1994) Coexistence among epiphytic bacterial populations mediated through nutritional resource partitioning. Appl Environ Microb 60:4468–4477

    CAS  Google Scholar 

  • Wooldridge K (2009) Bacterial secreted proteins: secretory mechanisms and role in pathogenesis. Horizon Scientific Press

    Google Scholar 

  • Wright SJ (2002) Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130:1–14

    Article  PubMed  Google Scholar 

  • Yang S, Zhang Q, Guo J et al (2006) Global effect of indole-3-acetic acid biosynthesis on multiple virulence factors of Erwinia chrysanthemi 3937. Appl Environ Microb 73:1079–1088

    Article  CAS  Google Scholar 

  • Yang T, Adams JM, Shi Y et al (2017) Soil fungal diversity in natural grasslands of the Tibetan Plateau: associations with plant diversity and productivity. New Phytol 215:756–765

    Article  PubMed  PubMed Central  Google Scholar 

  • Zak DR, Holmes WE, White DC et al (2003) Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84:2042–2050

    Article  Google Scholar 

  • Zalamea PC, Sarmiento C, Arnold AE et al (2015) Do soil microbes and abrasion by soil particles influence persistence and loss of physical dormancy in seeds of tropical pioneers? Front Plant Sci 5:799

    Article  PubMed  PubMed Central  Google Scholar 

  • Zamioudis C, Pieterse CM (2012) Modulation of host immunity by beneficial microbes. Mol Plant- Microbe In 25:139–150

    Article  CAS  Google Scholar 

  • Zhao Y, Thilmony R, Bender CL et al (2003) Virulence systems of Pseudomonas syringae pv. tomato promote bacterial speck disease in tomato by targeting the jasmonate signaling pathway. Plant J 36:485–499

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman NB, Vitousek PM (2012) Fungal endophyte communities reflect environmental structuring across a Hawaiian landscape. P Natl Acad Sci USA 109:13022–13027

    Article  Google Scholar 

Download references

Acknowledgements

We thank Melissa McCormick, Dennis Whigham, and Natalie Christian for helpful discussions over the course of this work and comments on earlier drafts of this manuscript. We like to thank Allen Herre and Betsy Arnold in particular for extensive help and comments during the course of this work. Moreover, we thank Betsy Arnold and Francois Lutzoni for permission to use Fig. 1. We acknowledge financial support from the National Science Foundation, the University of Pittsburgh, the Smithsonian Tropical Research Institute, the Smithsonian Environmental Research Center, Sigma Xi, and the American Philosophical Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric A. Griffin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 This chapter is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Griffin, E.A., Carson, W.P. (2018). Tree Endophytes: Cryptic Drivers of Tropical Forest Diversity. In: Pirttilä, A., Frank, A. (eds) Endophytes of Forest Trees. Forestry Sciences, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-319-89833-9_4

Download citation

Publish with us

Policies and ethics