Skip to main content

Dieback of European Ash: What Can We Learn from the Microbial Community and Species-Specific Traits of Endophytic Fungi Associated with Ash?

  • Chapter
  • First Online:

Part of the book series: Forestry Sciences ((FOSC,volume 86))

Abstract

European ash (Fraxinus excelsior), a keystone species with wide distribution and habitat range in Europe, is threatened at a continental scale by an invasive alien ascomycete, Hymenoscyphus fraxineus. In its native range of Asia, this fungus is a leaf endophyte with weak parasitic capacity and robust saprobic competence in local ash species that are closely related to European ash. In European ash, H. fraxineus has a similar functional role as in Asia, but the fungus also aggressively kills shoots, resulting in crown dieback and tree death. H. fraxineus is a typical invasive species, as its spread relies on high propagule pressure. While crown dieback of European ash is the most obvious symptom of ash dieback, the annual colonization of ash leaves is a crucial key dependency for the invasiveness of H. fraxineus, since its fruiting bodies are formed on overwintered leaf vein tissues in soil debris. Leaves of European ash host a wide range of indigenous epiphytes, endophytes, facultative parasites and biotrophic fungi, including Hymenoscyphus albidus, a relative of H. fraxineus that competes for the same sporulation niche as the invader. At face value, leaves of European ash are colonized by a large and diverse indigenous mycobiome. In order to understand why this invader became successful in Europe, we discuss and summarize the current knowledge of diversity, seasonal dynamics and traits of H. fraxineus and indigenous fungi associated with leaves of European ash.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

NGS:

Next-generation sequencing

ITS rDNA:

Internal transcribed spacer of ribosomal DNA

qPCR:

Quantitative polymerase chain reaction

References

  • Agler MT, Ruhe J, Kroll S et al (2016) Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. https://doi.org/10.1371/journal.pbio.1002352

    Article  PubMed  PubMed Central  Google Scholar 

  • Amselem J, Cuomo CA, van Kan JA et al (2011) Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet 7:e1002230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andersson PF, Johansson SBK, Stenlid J et al (2010) Isolation, identification and necrotic activity of viridiol from Chalara fraxinea, the fungus responsible for dieback of ash. For Pathol 40:43–46

    Article  Google Scholar 

  • Arnold AE, Mejia LC, Kyllo D et al (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci U S A 100:15649–15654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bakys R, Vasaitis R, Barklund P et al (2009) Investigations concerning the role of Chalara fraxinea in declining Fraxinus excelsior. Plant Pathol 58:284–292

    Article  Google Scholar 

  • Baral HO, Queloz V, Hosoya T (2014) Hymenoscyphus fraxineus, the correct scientific name for the fungus causing ash dieback in Europe. IMA Fungus 5:79

    Article  PubMed  PubMed Central  Google Scholar 

  • Baral HO, Bemmann M (2014) Hymenoscyphus fraxineus versus Hymenoscyphus albidus – A comparative light microscopic study on the causal agent of European ash dieback and related foliicolous, stroma-forming species. Mycology 5:228–290

    Article  PubMed  Google Scholar 

  • Barklund P (2005) Ash dieback takes over south and mid-Sweden. SkogsEko 3:11–13 (In Swedish)

    Google Scholar 

  • Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarosik V, Wilson JRU, Richardson DM (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339

    Article  PubMed  Google Scholar 

  • Burton JN, Liachko I, Dunham MJ, and Shendure J (2014) Species-level deconvolution of metagenome assemblies with Hi-C-based contact probability maps. G3 (Bethesda) 4:1339–1346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Børja I, Solheim H, Nagy NE et al (2017) Hymenoscyphus fraxineus shows population density dependent growth rate. Poster. In: IUFRO 125th Anniversary congress, 18–22 September 2017, Freiburg, Germany

    Google Scholar 

  • Čermáková V, Kudláček T, Rotková G et al (2017) Hymenoscyphus fraxineus mitovirus 1 naturally disperses through the airborne inoculum of its host, Hymenoscyphus fraxineus, in the Czech Republic. Biocontrol Sci Technol. https://doi.org/10.1080/09583157.2017.1368455

    Article  Google Scholar 

  • Chandelier A, Helson M, Dvorak M et al (2014) Detection and quantification of airborne inoculum of Hymenoscyphus pseudoalbidus using real-time PCR assays. Plant Pathol 63:1296–1305

    Article  CAS  Google Scholar 

  • Chen J (2012) Fungal community survey of Fraxinus excelsior in New Zealand. Master thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden

    Google Scholar 

  • Chen L, Yue Q, Zhang X et al (2013) Genomics-driven discovery of the pneumocandin biosynthetic gene cluster in the fungus Glarea lozoyensis. BMC Genom 20:339. https://doi.org/10.1186/1471-2164-14-339

    Article  CAS  Google Scholar 

  • Chua KH, Lee PC, Chai HC (2016) Development of insulated isothermal PCR for rapid on-site malaria detection. Malaria J 15:134

    Article  CAS  Google Scholar 

  • Clay K (2004) Fungi and the food of the gods. Nature 427:401–402

    Article  PubMed  CAS  Google Scholar 

  • Citron C, Junker C, Schulz B et al (2014) A volatile lactone of Hymenoscyphus pseudoalbius, pathogen of ash dieback inhibits host germination. Angew Chem Int Edit 53:4346–4349

    Article  CAS  Google Scholar 

  • Cleary M, Daniel G, Stenlid J (2013) Light and scanning electron microscopy studies of the early infection stages of Hymenoscyphus pseudoalbidus on Fraxinus excelsior. Plant Pathol 62:1294–1301

    Article  Google Scholar 

  • Cleary M, Nguyen D, Marciulyniene D et al (2016) Friend or foe? Biological and ecological traits of the European ash dieback pathogen Hymenoscyphus fraxineus in its native environment. Sci Rep 6:21895

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Colautti RI, Grigorovich IA, MacIsaac HJ (2006) Propagule pressure: a null model for biological invasions. Biol Invasions 12:157–172

    Google Scholar 

  • Cordero RJB, Casadevall A (2017) Functions of fungal melanin beyond virulence. Fungal Biol Rev 31:99–112

    Article  PubMed  PubMed Central  Google Scholar 

  • Cross H, Sønstebø JH, Nagy NE et al (2017) Fungal diversity and seasonal succession in ash leaves infected by the invasive ascomycete Hymenoscyphus fraxineus. New Phytol 213:1405–1417

    Article  PubMed  CAS  Google Scholar 

  • Davydenko K, Vasaitis R, Stenlid J et al (2011) Fungi in foliage and shoots of Fraxinus excelsior in eastern Ukraine: a first report on Hymenoscyphus pseudoalbidus. For Pathol 43:462–467

    Article  Google Scholar 

  • Dawson W, Moser D, van Kleunen M et al (2017) Global hotspots and correlates of alien species richness across taxonomic groups. Nat Ecol Evol 1:186

    Article  Google Scholar 

  • Derbyshire M, Denton-Giles M, Hegedus D et al (2017) The complete genome sequence of the phytopathogenic fungus Sclerotinia sclerotiorum reveals insights into the genome architecture of broad host range pathogens. Genome Biol Evol 9:593–618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Develey-Rivière M-P, Galiana E (2007) Resistance to pathogens and host developmental stage: a multifaceted relationship within the plant kingdom. New Phytol 175:405–416

    Article  PubMed  Google Scholar 

  • Drenkhan R, Solheim H, Bogacheva A et al (2017) Hymenoscyphus fraxineus is a leaf pathogen of local Fraxinus species in the Russian Far East. Plant Pathol 66:490–500

    Article  CAS  Google Scholar 

  • Drayton FL (1932) The sexual function of the microconidia in certain discomycetes. Mycologia 24:345–348

    Article  Google Scholar 

  • Dobrowolska D, Hein S, Oosterbaan A et al (2011) A review of European ash (Fraxinus excelsior l.): implications for silviculture. Forestry 84:133–148

    Article  Google Scholar 

  • Dvorak M, Rotkova G, Botella L (2016) Detection of airborne inoculum of Hymenoscyphus fraxineus and H. albidus during seasonal fluctuations associated with absence of apothecia. Forests 7(1): 1. https://doi.org/10.3390/f7010001

    Article  Google Scholar 

  • Engesser R, Queloz V, Meier F et al (2009) Das Triebsterben der Esche in der Schweiz. Wald und Holz 6:24–27

    Google Scholar 

  • Fauvergue X, Vercken E, Malausa T et al (2012) The biology of small, introduced populations, with special reference to biological control. Evol Appl 5:424–443

    Article  PubMed  PubMed Central  Google Scholar 

  • Fones HN, Mardon C, Gurr SJ (2016) A role for the asexual spores in infection of Fraxinus excelsior by the ash-dieback fungus Hymenoscyphus fraxineus. Sci Rep 6:34638

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ganley RJ, Brunsfeld SJ, Newcombe G (2004) A community of unknown, endophytic fungi in western white pine. Proc Natl Acad Sci U S A 101:10107–10112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ganley RJ, Newcombe G (2006) Fungal endophytes in seeds and needles of Pinus monticola. Mycol Res 110:318–327

    Article  PubMed  Google Scholar 

  • Gianoulis TA, Griffin MA, Spakowicz DJ et al (2012) Genomic analysis of the hydrocarbon-producing, cellulolytic, endophytic fungus Ascocoryne sarcoides. PLoS Genet 8:e1002558. https://doi.org/10.1371/journal.pgen.1002558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gilbert GS, Webb CO (2007) Phylogenetic signal in plant pathogen-host range. Proc Natl Acad Sci U S A 104:4979–4983

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gomez BL, Nosanchuk JD (2003) Melanin and fungi. Curr Opin Infect Dis 16:91–96

    Article  PubMed  CAS  Google Scholar 

  • González-Domínguez E, Armengol J, Rossi V (2017) Biology and Epidemiology of Venturia species affecting fruit crops: a review. Front Plant Sci 8:1496

    Article  PubMed  PubMed Central  Google Scholar 

  • Grad B, Kowalski T, Kraj W (2009) Studies on secondary metabolite produced by Chalara fraxinea and its phytotoxic influence on Fraxinus excelsior. Phytopathologia 54:61–69

    Google Scholar 

  • Gross A, Holdenrieder O (2013) On the longevity of Hymenoscyphus pseudoalbidus in petioles of Fraxinus excelsior. For Pathol 43:168–170

    Article  Google Scholar 

  • Gross A, Holdenrieder O, Pautasso M et al (2014a) Hymenoscyphus pseudoalbidus, the causal agent of European ash dieback. Mol Plant Pathol 15:5–21

    Article  PubMed  CAS  Google Scholar 

  • Gross A, Hosoya T, Queloz V (2014b) Population structure of the invasive forest pathogen Hymenoscyphus pseudoalbidus. Mol Ecol 23:2943–2960

    Article  PubMed  Google Scholar 

  • Gross A, Zaffarano PL, Duo A et al (2012) Reproductive mode and life cycle of the ash dieback pathogen Hymenoscyphus pseudoalbidus. Fungal Genet Biol 49:977–986

    Article  PubMed  CAS  Google Scholar 

  • Halecker S, Surup F, Kuhnert E et al (2014) Hymenosetin, a 3-decalinoyltetramic acid antibiotic from cultures of the ash dieback pathogen, Hymenoscyphus pseudoalbidus. Phytochemistry 100:86–91

    Article  PubMed  CAS  Google Scholar 

  • Halecker S, Surup F, Solheim H et al (2017) Albiducins A and B, salicylaldehyde antibiotics from the ash tree-associated saprotrophic fungus Hymenoscyphus albidus. J Antibiot. https://doi.org/10.1038/ja.2017.66

    Article  Google Scholar 

  • Haňáčková Z, Havrdová L, Černý L et al (2017a) Fungal endophytes in ash shoots – Diversity and inhibition of Hymenoscyphus fraxineus. Balt For 23:89–106

    Google Scholar 

  • Haňáčková Z, Koukol O, Čmoková A et al (2017b) Direct evidence of Hymenoscyphus fraxineus infection pathway through the petiole-shoot junction. Forest Pathol. https://doi.org/10.1111/efp.12370

    Article  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G et al (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:1293–1320

    Article  Google Scholar 

  • Hietala AM, Timmermann V, Børja I et al (2013) The invasive ash dieback pathogen Hymenoscyphus pseudoalbidus exerts maximal infection pressure prior to the onset of host leaf senescence. Fungal Ecol 6:302–308

    Article  Google Scholar 

  • Heil CS, Burton JN, Liachko I, et al (2017) Identification of a novel interspecific hybrid yeast from a metagenomic spontaneously inoculated beer sample using Hi-C. Yeast. https://doi.org/10.1002/yea.3280

  • Henriksen S, Hilmo O (eds) (2015) Norsk rødliste for arter 2015 [Norwegian red list for species 2015]. Artsdatabanken, Norway (in Norwegian)

    Google Scholar 

  • Hosoya T, Otani Y, Furuya K (1993) Materials for the fungus flora of Japan (46). Trans Mycol Soc Jpn 34:429–432

    Google Scholar 

  • Ibrahim M, Schlegel M, Sieber TN (2016) Venturia orni sp. nov, a species distinct from Venturia fraxini, living in the leaves of Fraxinus ornus. Mycol Prog 15:29

    Google Scholar 

  • Jumpponen A, Jones K (2010) Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments. New Phytol 186:496–513

    Article  PubMed  CAS  Google Scholar 

  • Junker C (2013) Pathogenese und Ansätze zur Kontrolle von Hymenoscyphus pseudoalbidus – Erreger des Eschentriebsterbens: Variabilität von Virulenz, Morphologie, Biochemie und Sekundärstoffwechsel. Ph.D. thesis, Braunschweig University of Technology, Germany

    Google Scholar 

  • Junker C, Mandey F, Pais A et al (2014) Hymenoscyphus pseudoalbidus and Hymenoscyphus albidus: viridiol concentration and virulence do not correlate. For Pathol 44:39–44

    Article  Google Scholar 

  • Kennedy TA, Naeem S, Howe KM et al (2002) Biodiversity as a barrier to ecological invasion. Nature 417:636–638

    Article  PubMed  CAS  Google Scholar 

  • Kimura N, Tsuge T (1993) Gene cluster involved in melanin biosynthesis of the filamentous fungus Alternaria alternata. J Bacteriol 175:4427–4435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • King KM, Webber JF (2016) Development of a multiplex PCR assay to discriminate native Hymenoscyphus albidus and introduced Hymenoscyphus fraxineus in Britain and assess their distribution. Fungal Ecol 23:79–85

    Article  Google Scholar 

  • Kirisits T (2015) Ascocarp formation of Hymenoscyphus fraxineus on several-year-old pseudosclerotial leaf rachises of Fraxinus excelsior. For Pathol 45:254–257

    Article  Google Scholar 

  • Kirisits T, Matlakova M, Mottinger-Kroupa S et al (2009) The current situation of ash dieback caused by Chalara fraxinea in Austria. In: Doğmuş-Lehtijärvi T (ed) Proceedings of the IUFRO working party 7.02.02. Eğirdir, Turkey, 11–16 May 2009, p 21. Isparta, Turkey: Süleyman Demirel University, Faculty of Forestry

    Google Scholar 

  • Koukol O, Haňáčková Z, Dvořák M et al (2016) Unseen, but still present in Czechia: Hymenoscyphus albidus detected by real-time PCR, but not by intensive sampling. Mycol Prog 15:1–9

    Article  Google Scholar 

  • Kowalski T (2006) Chalara fraxinea sp.nov. associated with dieback of ash (Fraxinus excelsior) in Poland. For Pathol 36:264–270

    Article  Google Scholar 

  • Kowalski T, Bartnik C (2010) Morphological variation in colonies of Chalara fraxinea isolated from ash (Fraxinus excelsior L.) stems with symptoms of dieback and effects of temperature on colony growth and structure. Acta Agrobot 63:99–106

    Article  Google Scholar 

  • Kowalski T, Holdenrieder O (2009) The teleomorph of Chalara fraxinea, the causal agent of ash dieback. For Pathol 39:304–308

    Article  Google Scholar 

  • Kowalski T, Bialobrzeski M, Ostafinska A (2013) The occurrence of Hymenoscyphus pseudoalbidus apothecia in the leaf litter of Fraxinus excelsior stands with ash dieback symptoms in southern Poland. Acta Mycol 48:135–146

    Article  Google Scholar 

  • Kuemmerle T, Levers C, Erb K et al (2016) Hotspots of land use change in Europe. Environ Res Lett 11: Article 064020

    Article  Google Scholar 

  • Kuske CR, Hesse CN, Challacombe F (2015) Prospects and challenges for fungal metatranscriptomics of complex communities. Fungal Ecol 14:133–137

    Article  Google Scholar 

  • Laforest-Lapointe I, Paguette A, Messier C et al (2017) Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature 546:145–147

    Article  PubMed  CAS  Google Scholar 

  • Levine JM, D’Antonio CM (1999) Elton revisited: a review of evidence linking diversity and invasibility. Oikos 87:15–26

    Article  Google Scholar 

  • Liao HL, Chen Y, Bruns TD et al (2014) Metatranscriptomic analysis of ectomycorrhizal roots reveals genes associated with Piloderma-Pinus symbiosis: improved methodologies for assessing gene expression in situ. Environ Microbiol 16:3730–3742

    Article  PubMed  CAS  Google Scholar 

  • Maheshwari R (1999) Microconidia of Neurospora crassa. Fungal Genet Biol 26:1–18

    Article  PubMed  CAS  Google Scholar 

  • Manoharan L, Kushwaha SK, Hedlund K et al (2015) Captured metagenomics: large-scale targeting of genes based on ‘sequence capture’ reveals functional diversity in soils. DNA Res 22:451–460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marigo G, Peltier JP, Girel J et al (2000) Success in the demographic expansion of Fraxinus excelsior L. Trees 15:1–13

    Article  Google Scholar 

  • McKinney LV, Nielsen LR, Collinge DB et al (2014) The ash dieback crisis: genetic variation in resistance can prove a long-term solution. Plant Pathol 63:485–499

    Article  Google Scholar 

  • McKinney LV, Thomsen IM, Kjaer ED et al (2012) Rapid invasion by an aggressive pathogenic fungus (Hymenoscyphus pseudoalbidus) replaces a native decomposer (Hymenoscyphus albidus): a case of local cryptic extinction? Fungal Ecol 5:663–669

    Article  Google Scholar 

  • McMullan M, Rafiqi M, Kaithakottil G et al (2017) The ash dieback invasion of Europe was founded by two individuals from a native population with huge adaptive potential. BioRxiv https://doi.org/10.1101/146746

  • Minenko E, Vogel RF, Niessen L (2014) Application of one-step reverse transcription loop mediated isothermal amplification (reverse transcripton LAMP) for rapid detection of fungal gene expression in pure culture mycelia and in planta. Mycoscience 55:425–430

    Article  CAS  Google Scholar 

  • Morf J, Wingett SW, Farabella I et al (2017) Spatial RNA proximities reveal a bipartite nuclear transcriptome and territories of differential density and transcription elongation rates. BioRxiv https://doi.org/10.1101/196147

  • Nielsen LR, McKinney LV, Hietala AM et al (2017) The susceptibility of Asian, European and North American Fraxinus species to the ash dieback pathogen Hymenoscyphus fraxineus reflects their phylogenetic history. Eur J For Res 136:59–73

    Article  Google Scholar 

  • Paini DR, Sheppard AW, Cook DC et al (2016) Global threat to agriculture from invasive species. Proc Natl Acad Sci U S A 113:7575–7579

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pautasso M, Aas G, Queloz V et al (2013) European ash (Fraxinus excelsior) dieback – A conservation biology challenge. Biol Conserv 158:37–49

    Article  Google Scholar 

  • Petrini L, Petrini O (1985) Xylariaceous fungi as endophytes. Sydowia. Ann Mycol Ser II 38:216–234

    Google Scholar 

  • Plissonneau C, Benevenuto J, Mohd-Assaad N et al (2017) Using population and comparative genomics to understand the genetic basis of effector-driven fungal pathogen evolution. Front Plant Sci 8:1–15

    Article  Google Scholar 

  • Pomerantz A, Penafiel N, Arteaga A et al (2017) Real-time DNA barcoding in a remote rainforest using nanopore sequencing. BioRiv https://doi.org/10.1101/189159

  • Poudel R, Jumpponen A, Schlatter DC et al (2016) Microbiome Networks: a systems framework for identifying candidate microbial assemblages for disease management. Phytopathology 106:1083–1096

    Article  PubMed  CAS  Google Scholar 

  • Press MO, Wiser AH, Kronenberg ZN et al (2017) Hi-C deconvolution of a human gut microbiome yields high-quality draft genomes and reveals plasmid-genome interactions. BioRxiv https://doi.org/10.1101/198713

  • Pliūra A, Bakys R, Suchockas V et al (2017) Ash dieback in Lithuania: disease history, research on impact and genetic variation in disease resistance, tree breeding and options for forest management. In: Vasaitis R, Enderle R (eds) Dieback of European ash (Fraxinus spp.): consequences and guidelines for sustainable management. Swedish University of Agricultural Sciences, pp 150–165. ISBN (print version) 978-91-576-8696-1, ISBN (electronic version) 978-91-576-8697-8

    Google Scholar 

  • Przybył K (2002) Fungi associated with necrotic apical parts of Fraxinus excelsior shoots. For Pathol 32:387–394

    Article  Google Scholar 

  • Queloz V, Grunig CR, Berndt R et al (2011) Cryptic speciation in Hymenoscyphus albidus. For Pathol 41:133–142

    Article  Google Scholar 

  • Reiher DBA (2011) Leaf-inhabiting endophytic fungi in the canopy of the Leipzig floodplain forest. Ph.D. thesis, University of Leipzig, Leipzig, Germany

    Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE et al (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  PubMed  CAS  Google Scholar 

  • Sambles C, Moore K, Kershaw M et al (2015) Genome sequencing of nine species from the genus, Hymenoscyphus. http://oadb.tsl.ac.uk/?p=915. Accessed 16 Oct 2017

  • Schlegel M, Dubach V, von Buol L et al (2016) Effects of endophytic fungi on the ash dieback pathogen. FEMS Microbiol Ecol 92. https://doi.org/10.1093/femsec/fiw142

  • Schoebel CN, Botella L, Lygis V et al (2017) Population genetic analysis of a parasitic mycovirus to infer the invasion history of its fungal host. Mol Ecol. https://doi.org/10.1111/mec.14048

    Article  PubMed  Google Scholar 

  • Scholtysik A, Unterseher M, Otto P et al (2013) Spatio-temporal dynamics of endophyte diversity in the canopy of European ash (Fraxinus excelsior). Mycol Prog 12:291–304

    Article  Google Scholar 

  • Schubert K, Ritschel A, Braun U (2003) A monograph of Fusicladium s.lat. (Hyphomycetes). Schlechtendalia 9:1–132

    Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    Article  PubMed  Google Scholar 

  • Schulz B, Boyle C, Draeger S et al (2002) Endophytic fungi: a source of biologically active secondary metabolites. Mycol Res 106:996–1004

    Article  CAS  Google Scholar 

  • Schulz B, Haas S, Junker C et al (2015) Fungal endophytes involved in multiple balanced antagonisms. Curr Sci 109:39–45

    Google Scholar 

  • Sieber TN (2007) Endophytic fungi in forest trees: are they mutualists? Fungal Biol Rev 21:75–89

    Article  Google Scholar 

  • Simberloff D (2009) The role of propagule pressure in biological invasions. Ann Rev Ecol Evol S 40:81–102

    Article  Google Scholar 

  • Solheim H, Hietala AM (2017) Spread of ash dieback in Norway. Balt For 23:144–149

    Google Scholar 

  • Stachowicz JJ, Tilman D (2005) Species invasions and the relationships between species diversity, community saturation, and ecosystem functioning. In: Sax DF, Stachowicz JJ, Gaines SD (eds) Species invasions: insights into ecology, evolution and biogeography. Sinauer Associates Inc., Massachusetts, pp 41–64

    Google Scholar 

  • Steinböck S (2013) Ash dieback caused by Hymenoscyphus pseudoalbidus in Norway: phenology and etiology of leaf symptoms and ascospore dispersal distances. Master thesis, University of Natural Resources and Life Sciences, Vienna, Austria

    Google Scholar 

  • Stenlid J, Elfstrand M, Cleary M et al (2017) Genomes of Hymenoscyphus fraxineus and Hymenoscyphus albidus encode surprisingly large cell wall degrading potential, balancing saprotrophic and necrotrophic signatures. Balt For 23:41–51

    Google Scholar 

  • Suenaga H (2012) Targeted metagenomics: a high-resolution metagenomics approach for specific gene clusters in complex microbial communities. Environ Microbiol 14:13–22

    Article  PubMed  CAS  Google Scholar 

  • Sønstebø JH, Vivian-Smith A, Adamson K et al (2017) Genome-wide population diversity in Hymenoscyphus fraxineus points to an eastern Russian origin of European Ash dieback. BioRxiv. https://doi.org/10.1101/154492

    Article  Google Scholar 

  • Talgø V, Sletten A, Brurberg MB et al (2009) Chalara fraxinea isolated from diseased ash in Norway. Plant Dis 95:548

    Article  Google Scholar 

  • Tilman D (2004) A stochastic theory of resource competition, community assembly and invasions. Proc Natl Acad Sci U S A 101:10854–10861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Timmermann V, Børja I, Hietala AM et al (2011) Ash dieback: pathogen spread and diurnal patterns of ascospore dispersal, with special emphasis on Norway. EPPO Bull 41:14–20

    Article  Google Scholar 

  • Timmermann V, Nagy NE, Hietala AM et al (2017) Progression of ash dieback in Norway related to tree age, disease history and regional aspects. Balt For 23:150–158

    Google Scholar 

  • Trapiello E, Schoebel CN, Rigling D (2017) Fungal community in symptomatic ash leaves in Spain. Balt For 23:68–73

    Google Scholar 

  • Truong C, Mujic AB, Healy R et al (2017) How to know the fungi: combining field inventories and DNA-barcoding to document fungal diversity. New Phytol 214:913–919

    Article  PubMed  Google Scholar 

  • Unterseher M, Reiher A, Finstermeier K et al (2007) Species richness and distribution patterns of leaf-inhabiting endophytic fungi in a temperate forest canopy. Mycol Prog 6:201–212

    Article  Google Scholar 

  • Vasaitis R, Enderle R (eds) (2017) Dieback of European Ash (Fraxinus spp.) – Consequences and guidelines for sustainable management. Swedish University of Agricultural Sciences, 320 p. ISBN (print version) 978-91-576-8696-1, ISBN (electronic version) 978-91-576-8697-8

    Google Scholar 

  • Voegele RT, Mendgen K (2003) Rust haustoria: nutrient uptake and beyond. New Phytol 159:93–100

    Article  CAS  PubMed  Google Scholar 

  • Voříšková J, Baldrian P (2013) Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J 7:477–486

    Article  PubMed  CAS  Google Scholar 

  • van der Heijden MGA, Hartmann M (2016) Networking in the plant microbiome. PLoS Biol. https://doi.org/10.1371/journal.pbio.1002378

    Article  PubMed  PubMed Central  Google Scholar 

  • van Kan JAL, Stassen JHM, Mosbach A et al (2017) A gapless genome sequence of the fungus Botrytis cinerea. Mol Plant Pathol 18:75–89

    Article  PubMed  CAS  Google Scholar 

  • Wallander E (2008) Systematics of Fraxinus (Oleaceae) and evolution of dioecy. Plant Syst Evol 273:25–49

    Article  Google Scholar 

  • Wang Z, Johnston PR, Yang ZL et al (2009) Evolution of reproductive morphology in leaf endophytes. PLoS ONE 4(1):e4246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Youssara L, Grüning BA, Erxleben A (2012) Genome sequence of the fungus Glarea lozoyensis: the first genome sequence of a species from the Helotiaceae family. Eukaryot Cell 11:250

    Article  CAS  Google Scholar 

  • Zhao YJ, Hosoya T, Baral H-O et al (2013) Hymenoscyphus pseudoalbidus, the correct name for Lambertella albida reported from Japan. Mycotaxon 122:25–41

    Article  Google Scholar 

  • Zheng HD, Zhuang WY (2014) Hymenoscyphus albidoides sp. nov. and H. pseudoalbidus from China. Mycol Prog 13:625–638

    Article  Google Scholar 

  • Zhu S, Cao YZ, Jiang C (2012) Sequencing the genome of Marssonina brunnea reveals fungus-poplar co-evolution. BMC Genom 9:382

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The writing of this chapter was supported by a strategic institute project focused on forest health and financed by the Norwegian Institute of Bioeconomy Research, the Norwegian Ministry of Agriculture and Food, and the Research Council of Norway. We would like to thank Dr. Anna Maria Pirttilä for valuable comments and careful editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ari M. Hietala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hietala, A.M. et al. (2018). Dieback of European Ash: What Can We Learn from the Microbial Community and Species-Specific Traits of Endophytic Fungi Associated with Ash?. In: Pirttilä, A., Frank, A. (eds) Endophytes of Forest Trees. Forestry Sciences, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-319-89833-9_11

Download citation

Publish with us

Policies and ethics