Skip to main content

Finite-Difference Modeling of Nonlinear Phenomena in Time-Domain Electromagnetics: A Review

  • Chapter
  • First Online:
Applications of Nonlinear Analysis

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 134))

Abstract

Nonlinearities are likely to emerge in a wide range of electromagnetic (EM) problems, commonly described by Maxwell’s equations, which can be encountered in several real-world applications, in areas such as optical communications, etc. The necessity for efficiently analyzing this type of problems has led to the development of suitable computational approaches, among which schemes based on the finite-difference time-domain (FDTD) method play a prominent role. Unlike other numerical methods that perform reliably only if specific approximations are valid (e.g. wave propagation along a dominant direction), FDTD-based techniques can be applied in more generalized frameworks, and are capable of computing credible outcomes without requiring very complex algorithmic implementations. In the present chapter, we report various key contributions presented over the years regarding the nonlinear FDTD analysis of EM problems, as the original algorithm is suitable for linear cases only, and describe their basic formulation, features, and range of applicability. In essence, this work aspires to provide an updated look on existing finite-difference models for nonlinear problems, and offer to those not familiar with the subject a solid starting point for studying the corresponding electromagnetic phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the simple—quite common—case of linear materials, it is P = 𝜖 0 χ (1) E.

  2. 2.

    The convention \(f\left ( {i\varDelta x,j\varDelta y,k\varDelta z,n\varDelta t} \right ) = \left . f \right |{ }_{i,j,k}^n\) is used in this work.

  3. 3.

    Second-harmonic generation is a phenomenon, according to which a wave within a nonlinear medium can produce another wave with twice the frequency of the former.

References

  1. K. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)

    Google Scholar 

  2. A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, 2005)

    Google Scholar 

  3. J.-F. Lee, R. Lee, A. Cangellaris, Time-domain finite-element methods. IEEE Trans. Antennas Propag. 45(3), 430–442 (1997)

    Article  MathSciNet  Google Scholar 

  4. J. Chen, Q.H. Liu, Discontinuous Galerkin time-domain methods for multiscale electromagnetic simulations: a review. Proc. IEEE 101(2), 242–254 (2013)

    Article  Google Scholar 

  5. S.M. Rao, D.R. Wilton, Transient scattering by conducting surfaces of arbitrary shape. IEEE Trans. Antennas Propag. 39(1), 56–61 (1991)

    Article  Google Scholar 

  6. N.V. Kantartzis, T.D. Tsiboukis, Higher Order FDTD Schemes for Waveguide and Antenna Structures (Morgan & Claypool Publishers, San Rafael, 2006)

    Google Scholar 

  7. M. Okoniewski, M. Mrozowski, M.A. Stuchly, Simple treatment of multi-term dispersion in FDTD. IEEE Microw. Guid. Wave Lett. 7(5), 121–123 (1997)

    Article  Google Scholar 

  8. J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114(2), 185–200 (1994)

    Article  MathSciNet  Google Scholar 

  9. A. Monorchio, R. Mittra, Time-domain (FE/FDTD) technique for solving complex electromagnetic problems. IEEE Microw. Guid. Wave Lett. 8(2), 93–95 (1998)

    Article  Google Scholar 

  10. T. Noda, S. Yokoyama, Thin wire representation in finite difference time domain surge simulation. IEEE Trans. Power Delivery 17(3), 840–847 (2002)

    Article  Google Scholar 

  11. J.G. Maloney, G.S. Smith, The use of surface impedance concepts in the finite-difference time-domain method. IEEE Trans. Antennas Propag. 40(1), 38–48 (1992)

    Article  Google Scholar 

  12. D. Anderson, Variational approach to nonlinear pulse propagation in optical fibers. Phys. Rev. A 27, 3135–3145 (1983)

    Article  Google Scholar 

  13. Y. Chung, N. Dagli, An assessment of finite difference beam propagation method. IEEE J. Quantum Electron. 26(8), 1335–1339 (1990)

    Article  Google Scholar 

  14. F.L. Teixeira, Time-domain finite-difference and finite-element methods for Maxwell equations in complex media. IEEE Trans. Antennas Propag. 56(8), 2150–2166 (2008)

    Article  MathSciNet  Google Scholar 

  15. R.M. Joseph, A. Taflove, FDTD Maxwell’s equations models for nonlinear electrodynamics and optics. IEEE Trans. Antennas Propag. 45(3), 364–374 (1997)

    Article  Google Scholar 

  16. I.S. Maksymov, A.A. Sukhorukov, A.V. Lavrinenko, Y.S. Kivshar, Comparative study of FDTD-adopted numerical algorithms for Kerr nonlinearities. IEEE Antennas Wirel. Propag. Lett. 10, 143–146 (2011)

    Article  Google Scholar 

  17. P.M. Goorjian, A. Taflove, Direct time integration of Maxwell’s equations in nonlinear dispersive media for propagation and scattering of femtosecond electromagnetic solitons. Opt. Lett. 17(3), 180–182 (1992)

    Article  Google Scholar 

  18. P.M. Goorjian, A. Taflove, R.M. Joseph, S.C. Hagness, Computational modeling of femtosecond optical solitons from Maxwell’s equations. IEEE J. Quantum Electron. 28(10), 2416–2422 (1992)

    Article  Google Scholar 

  19. K.J. Blow, D. Wood, Theoretical description of transient stimulated Raman scattering in optical fibers. IEEE J. Quantum Electron. 25(12), 2665–2673 (1989)

    Article  Google Scholar 

  20. R.W. Ziolkowski, J.B. Judkins, Applications of the nonlinear finite difference time domain (NL-FDTD) method to pulse propagation in nonlinear media: self-focusing and linear-nonlinear interfaces. Radio Sci. 28(5), 901–911 (1993)

    Article  Google Scholar 

  21. R. Luebbers, K. Kumagai, S. Adachi, T. Uno, FDTD calculation of transient pulse propagation through a nonlinear magnetic sheet. IEEE Trans. Electromagn. Compat. 35(1), 90–94 (1993)

    Article  Google Scholar 

  22. B. Toland, B. Houshmand, T. Itoh, Modeling of nonlinear active regions with the FDTD method. IEEE Microw. Guid. Wave Lett. 3(9), 333–335 (1993)

    Article  Google Scholar 

  23. R. Holland, Finite-difference time-domain (FDTD) analysis of magnetic diffusion. IEEE Trans. Electromagn. Compat. 36(1), 32–39 (1994)

    Article  Google Scholar 

  24. P. Tran, Photonic-band-structure calculation of material possessing Kerr nonlinearity. Phys. Rev. B 52, 10673–10676 (1995)

    Article  Google Scholar 

  25. D.M. Sullivan, Nonlinear FDTD formulations using Z transforms. IEEE Trans. Microwave Theory Tech. 43(3), 676–682 (1995)

    Article  Google Scholar 

  26. A.S. Nagra, R.A. York, FDTD analysis of wave propagation in nonlinear absorbing and gain media. IEEE Trans. Antennas Propag. 46(3), 334–340 (1998)

    Article  Google Scholar 

  27. V. Van, S.K. Chaudhuri, A hybrid implicit-explicit FDTD scheme for nonlinear optical waveguide modeling. IEEE Trans. Microwave Theory Tech. 47(5), 540–545 (1999)

    Article  Google Scholar 

  28. D. Sullivan, J. Liu, M. Kuzyk, Three-dimensional optical pulse simulation using the FDTD method. IEEE Trans. Microwave Theory Tech. 48(7), 1127–1133 (2000)

    Article  Google Scholar 

  29. F. Raineri, Y. Dumeige, A. Levenson, X. Letartre, Nonlinear decoupled FDTD code: phase-matching in 2D defective photonic crystal. Electron. Lett. 38(25), 1704–1706 (2002)

    Article  Google Scholar 

  30. M. Fujii, M. Tahara, I. Sakagami, W. Freude, P. Russer, High-order FDTD and auxiliary differential equation formulation of optical pulse propagation in 2-D kerr and raman nonlinear dispersive media. IEEE J. Quantum Electron. 40(2), 175–182 (2004)

    Article  Google Scholar 

  31. M. Fujii, P. Russer, A nonlinear and dispersive APML ABC for the FD-TD methods. IEEE Microw. Wirel. Compon. Lett. 12(11), 444–446 (2002)

    Article  Google Scholar 

  32. J.H. Greene, A. Taflove, General vector auxiliary differential equation finite-difference time-domain method for nonlinear optics. Opt. Express 14(18), 8305–8310 (2006)

    Article  Google Scholar 

  33. M. Pototschnig, J. Niegemann, L. Tkeshelashvili, K. Busch, Time-domain simulations of the nonlinear Maxwell equations using operator-exponential methods. IEEE Trans. Antennas Propag. 57(2), 475–483 (2009)

    Article  MathSciNet  Google Scholar 

  34. A. Naqavi, M. Miri, K. Mehrany, S. Khorasani, Extension of unified formulation for the FDTD simulation of nonlinear dispersive media. IEEE Photon. Technol. Lett. 22(16), 1214–1216 (2010)

    Article  Google Scholar 

  35. J. Liu, M. Brio, Y. Zeng, A.R. Zakharian, W. Hoyer, S.W. Koch, J.V. Moloney, Generalization of the FDTD algorithm for simulations of hydrodynamic nonlinear Drude model. J. Comput. Phys. 229(17), 5921–5932 (2010)

    Article  Google Scholar 

  36. B.T. Caudle, M.E. Baginski, H. Kirkici, M.C. Hamilton, Three-dimensional FDTD simulation of nonlinear ferroelectric materials in rectangular waveguide. IEEE Trans. Plasma Sci. 41(2), 365–370 (2013)

    Article  Google Scholar 

  37. J. Francés, J. Tervo, S. Gallego, S. Bleda, C. Neipp, A. Márquez, Split-field finite-difference time-domain method for second-harmonic generation in two-dimensionally periodic structures. J. Opt. Soc. Am. B 32(4), 664–669 (2015)

    Article  Google Scholar 

  38. A. Mahalov, M. Moustaoui, Time-filtered leapfrog integration of Maxwell equations using unstaggered temporal grids. J. Comput. Phys. 325, 98–115 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodoros T. Zygiridis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zygiridis, T.T., Kantartzis, N.V. (2018). Finite-Difference Modeling of Nonlinear Phenomena in Time-Domain Electromagnetics: A Review. In: Rassias, T. (eds) Applications of Nonlinear Analysis . Springer Optimization and Its Applications, vol 134. Springer, Cham. https://doi.org/10.1007/978-3-319-89815-5_29

Download citation

Publish with us

Policies and ethics