Skip to main content

Nondiscrete Lassonde-Revalski Principle and Dependent Choice

  • Chapter
  • First Online:
Current Research in Nonlinear Analysis

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 135))

  • 716 Accesses

Abstract

The nondiscrete version of Lassonde-Revalski Fragmentability Principle (Proc. Amer. Math. Soc., 133 (2005), 2637–2646) is equivalent with the Bernays-Tarski Dependent Choice Principle; and as such, equivalent with Ekeland’s Variational Principle (J. Math. Anal. Appl., 47 (1974), 324–353).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.Q. Bao, P.Q. Khanh, Are several recent generalizations of Ekeland’s variational principle more general than the original principle? Acta Math. Vietnam. 28, 345–350 (2003)

    MathSciNet  MATH  Google Scholar 

  2. P. Bernays, A system of axiomatic set theory: Part III. Infinity and enumerability analysis. J. Symb. Log. 7, 65–89 (1942)

    Article  Google Scholar 

  3. C.E. Blair, The Baire category theorem implies the principle of dependent choice. Bull. Acad. Pol. Sci. (Sér. Math. Astronom. Phys.) 10, 933–934 (1977)

    MathSciNet  MATH  Google Scholar 

  4. J.M. Borwein, D. Preiss, A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions. Trans. Am. Math. Soc. 303, 517–527 (1987)

    Article  MathSciNet  Google Scholar 

  5. N. Bourbaki, General Topology, chaps. 1–4 (Springer, Berlin, 1989)

    MATH  Google Scholar 

  6. H. Brezis, F.E. Browder, A general principle on ordered sets in nonlinear functional analysis. Adv. Math. 21, 355–364 (1976)

    Article  MathSciNet  Google Scholar 

  7. A. Brøndsted, Fixed points and partial orders. Proc. Am. Math. Soc. 60, 365–366 (1976)

    MathSciNet  MATH  Google Scholar 

  8. N. Brunner, Topologische Maximalprinzipien. Zeitschr. Math. Logik Grundl. Math. 33, 135–139 (1987)

    Article  MathSciNet  Google Scholar 

  9. O. Cârjă, M. Necula, I. I. Vrabie, Viability, Invariance and Applications. North Holland Mathematics Studies, vol. 207 (Elsevier, Amsterdam, 2007)

    Google Scholar 

  10. P.J. Cohen, Set Theory and the Continuum Hypothesis (Benjamin, New York, 1966)

    MATH  Google Scholar 

  11. J. Daneš, Equivalence of some geometric and related results of nonlinear functional analysis. Comment. Math. Univ. Carol. 26, 443–454 (1985)

    MathSciNet  MATH  Google Scholar 

  12. R. Deville, N. Ghoussoub, Perturbed minimization principles and applications, in Handbook of the Geometry of Banach Spaces, ed. by W.B. Johnson, J. Lindenstrauss, vol. I, chap. 10 (Elsevier, Amsterdam, 2001), pp. 399–435

    Chapter  Google Scholar 

  13. R. Deville, G. Godefroy, V. Zizler, A smooth variational principle with applications to Hamilton-Jacobi equations in infinite dimensions. J. Funct. Anal. 111, 197–212 (1993)

    Article  MathSciNet  Google Scholar 

  14. J. Dodu, M. Morillon, The Hahn-Banach property and the axiom of choice. Math. Log. Q. 45, 299–314 (1999)

    Article  MathSciNet  Google Scholar 

  15. I. Ekeland, On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MathSciNet  Google Scholar 

  16. I. Ekeland, Nonconvex minimization problems. Bull. Am. Math. Soc. (New Series) 1, 443–474 (1979)

    Article  MathSciNet  Google Scholar 

  17. A. Goepfert, H. Riahi, C. Tammer, C. Zălinescu, Variational Methods in Partially Ordered Spaces. Canadian Mathematical Society Books in Mathematics, vol. 17 (Springer, New York, 2003)

    Google Scholar 

  18. C.F.K. Jung, On generalized complete metric spaces. Bull. Am. Math. Soc. 75, 113–116 (1969)

    Article  MathSciNet  Google Scholar 

  19. O. Kada, T. Suzuki, W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Math. Jpn. 44, 381–391 (1996)

    MathSciNet  MATH  Google Scholar 

  20. C. Kuratowski, Topologie (vol. I), Mathematical Monographs, vol. 20 (Polish Scientific Publishers, Warsaw, 1958)

    Google Scholar 

  21. M. Lassonde, J.P. Revalski, Fragmentability of sequences of set-valued mappings with applications to variational principles. Proc. Am. Math. Soc. 133, 2637–2646 (2005)

    Article  MathSciNet  Google Scholar 

  22. Y. Li, S. Shi, A generalization of Ekeland’s ε-variational principle and its Borwein-Preiss smooth variant. J. Math. Anal. Appl. 246, 308–319 (2000)

    Article  MathSciNet  Google Scholar 

  23. W.A.J. Luxemburg, On the convergence of successive approximations in the theory of ordinary differential equations (II). Indag. Math. 20, 540–546 (1958)

    Article  MathSciNet  Google Scholar 

  24. G.H. Moore, Zermelo’s Axiom of Choice: its Origin, Development and Influence (Springer, New York, 1982)

    Book  Google Scholar 

  25. Y. Moskhovakis, Notes on Set Theory (Springer, New York, 2006)

    Google Scholar 

  26. J.C. Oxtoby, Measure and Category (Springer, New York, 1980)

    Book  Google Scholar 

  27. E. Schechter, Handbook of Analysis and its Foundation (Academic Press, New York, 1997)

    MATH  Google Scholar 

  28. A. Tarski, Axiomatic and algebraic aspects of two theorems on sums of cardinals. Fundam. Math. 35, 79–104 (1948)

    Article  MathSciNet  Google Scholar 

  29. M. Turinici, A monotone version of the variational Ekeland’s principle. An. Şt. Univ. “A. I. Cuza” Iaşi (S. I-a: Mat) 36, 329–352 (1990)

    Google Scholar 

  30. M. Turinici, An order drop theorem. Le Matematiche 61, 213–230 (2006)

    MathSciNet  MATH  Google Scholar 

  31. M. Turinici, Variational statements on KST-metric structures. An. Şt. Univ. “Ovidius” Constanţa (Mat.) 17, 231–246 (2009)

    Google Scholar 

  32. M. Turinici, Sequential Maximality Principles, in Mathematics Without Boundaries, ed. by T.M. Rassias, P.M. Pardalos (Springer, New York, 2014), pp. 515–548

    Google Scholar 

  33. M. Turinici, Variational Principles in Gauge Spaces, in Optimization in Science and Engineering, ed. by T.M. Rassias, C.A. Floudas, S. Butenko (Springer, New York, 2014), pp. 503–542

    Chapter  Google Scholar 

  34. S. Willard, General Topology (Addison-Wesley, Don Mills, 1970)

    MATH  Google Scholar 

  35. E.S. Wolk, On the principle of dependent choices and some forms of Zorn’s lemma. Can. Math. Bull. 26, 365–367 (1983)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Turinici .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Turinici, M. (2018). Nondiscrete Lassonde-Revalski Principle and Dependent Choice. In: Rassias, T. (eds) Current Research in Nonlinear Analysis. Springer Optimization and Its Applications, vol 135. Springer, Cham. https://doi.org/10.1007/978-3-319-89800-1_13

Download citation

Publish with us

Policies and ethics