Skip to main content

Porous Medium Equation with Nonlocal Pressure

  • Chapter
  • First Online:
Current Research in Nonlinear Analysis

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 135))

Abstract

We provide a rather complete description of the results obtained so far on the nonlinear diffusion equation u t  = ∇⋅ (u m−1∇(−Δ)s u), which describes a flow through a porous medium driven by a nonlocal pressure. We consider constant parameters m > 1 and 0 < s < 1, we assume that the solutions are non-negative, and the problem is posed in the whole space. We present a theory of existence of solutions, results on uniqueness, and relation to other models. As new results of this paper, we prove the existence of self-similar solutions in the range when N = 1 and m > 2, and the asymptotic behavior of solutions when N = 1. The cases m = 1 and m = 2 were rather well known.

Dedicated to Profs. Haim Brezis and Louis Nirenberg with deep admiration

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.I. Barenblatt, On some unsteady motions of a liquid or a gas in a porous medium. Prikl. Mat. Mekh. 16(1), 67–78 (1952) (in Russian)

    Google Scholar 

  2. P. Bénilan, Equations d’évolution dans un espace de Banach quelconque et applications, Ph.D. Thesis, University of Orsay, 1972 (in French)

    Google Scholar 

  3. Ph. Bénilan, H. Brezis, M.G. Crandall, A semilinear equation in L 1(R N). Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2, 523–555 (1975)

    Google Scholar 

  4. P. Biler, G. Karch, R. Monneau, Nonlinear diffusion of dislocation density and self-similar solutions. Commun. Math. Phys. 294, 145–168 (2010)

    Article  MathSciNet  Google Scholar 

  5. P. Biler, C. Imbert, G. Karch, Barenblatt profiles for a nonlocal porous medium equation. C. R. Math. Acad. Sci. Paris. 349, 641–645 (2011)

    Article  MathSciNet  Google Scholar 

  6. P. Biler, C. Imbert, G. Karch. The nonlocal porous medium equation: barenblatt profiles and other weak solutions. Arch. Ration. Mech. Anal. 215, 497–529 (2015)

    Article  MathSciNet  Google Scholar 

  7. M. Bonforte, A. Segatti, J.L. Vázquez, Non-existence and instantaneous extinction of solutions for singular nonlinear fractional diffusion equations. Calc. Var. PDEs 55, 55–68 (2016)

    Google Scholar 

  8. M. Bonforte, Y. Sire, J.L. Vázquez, Optimal existence and uniqueness theory for the fractional heat equation. Nonlinear Anal. 153, 142–168 (2017)

    Article  MathSciNet  Google Scholar 

  9. H. Brezis, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, in Proceedings of Symposium Nonlinear Functional Analysis, Madison (1971), Contribution to Nonlinear Functional Analysis (Academic, New York, 1971), pp. 101–156

    Chapter  Google Scholar 

  10. H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert (North-Holland, Amsterdam, 1973)

    Google Scholar 

  11. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext (Springer, New York, 2011)

    Google Scholar 

  12. L.A. Caffarelli, A. Friedman, Continuity of the density of a gas flow in a porous medium. Trans. Am. Math. Soc. 252, 99–113 (1979)

    Article  MathSciNet  Google Scholar 

  13. L.A. Caffarelli, A. Friedman, Regularity of the free boundary of a gas flow in an n-dimensional porous medium. Indiana Univ. Math. J. 29, 361–391 (1980)

    Article  MathSciNet  Google Scholar 

  14. L.A. Caffarelli, L.C. Evans, Continuity of the temperature in the two-phase Stefan problem. Arch. Ration. Mech. Anal. 81(3), 199–220 (1983)

    Article  MathSciNet  Google Scholar 

  15. L.A. Caffarelli, S. Salsa, A Geometric Approach to Free Boundary Problems (American Mathematical Society, Providence, 2005)

    Google Scholar 

  16. L.A. Caffarelli, J.L. Vázquez, Nonlinear porous medium flow with fractional potential pressure. Arch. Ration. Mech. Anal. 202(2), 537–565 (2011)

    Article  MathSciNet  Google Scholar 

  17. L.A. Caffarelli, J.L. Vázquez, Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete Contin. Dyn. Syst. A 29(4), 1393–1404 (2011)

    Google Scholar 

  18. L.A. Caffarelli, J.L. Vázquez, Regularity of solutions of the fractional porous medium flow with exponent 1/2. St. Petersburg Math. J. 27(3), 437–460 (2016)

    Google Scholar 

  19. L.A. Caffarelli, J.L. Vázquez, N.I. Wolanski, Lipschitz continuity of solutions and interfaces of the N-dimensional porous medium equation. Indiana Univ. Math. J. 36, 373–401 (1987)

    Article  MathSciNet  Google Scholar 

  20. L.A. Caffarelli, F. Soria, J.L. Vázquez, Regularity of solutions of the fractional porous medium flow. J. Eur. Math. Soc. 15(5), 1701–1746 (2013)

    Article  MathSciNet  Google Scholar 

  21. J.A. Carrillo, Y. Huang, M.C. Santos, J.L. Vázquez, Exponential convergence towards stationary states for the 1D porous medium equation with fractional pressure. J. Differ. Equ. 258, 736–763 (2015)

    Article  MathSciNet  Google Scholar 

  22. E. Chasseigne, E.R. Jakobsen, On nonlocal quasilinear equations and their local limits. J. Differ. Equ. 262(6), 3759–3804 (2017)

    Article  MathSciNet  Google Scholar 

  23. M.G. Crandall, T.M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces. Am. J. Math. 93, 265–298 (1971)

    Article  MathSciNet  Google Scholar 

  24. A. de Pablo, F. Quirós, A. Rodríguez, J.L. Vázquez, A fractional porous medium equation. Adv. Math. 226(2), 1378–1409 (2011)

    Google Scholar 

  25. A. de Pablo, F. Quirós, A. Rodríguez, J.L. Vázquez, A general fractional porous medium equation. Comm. Pure Appl. Math. 65(9), 1242–1284 (2012)

    Article  MathSciNet  Google Scholar 

  26. A. de Pablo, F. Quirós, A. Rodríguez, J.L. Vázquez. Classical solutions for a logarithmic fractional diffusion equation. J. Math. Pures Appl. (9) 101(6), 901–924 (2014)

    Article  MathSciNet  Google Scholar 

  27. M. Del Pino, J. Dolbeault, Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions. J. Math. Pures Appl. 81(9), 847–875 (2002)

    Article  MathSciNet  Google Scholar 

  28. F. del Teso, Finite difference method for a fractional porous medium equation. Calcolo 51(4), 615–638 (2014)

    Google Scholar 

  29. E. DiBenedetto, Degenerate Parabolic Equations (Springer, Berlin, 1993)

    Google Scholar 

  30. J. Dolbeault, A. Zhang, Flows and functional inequalities for fractional operators. Appl. Anal. 96(9), 1547–1560 (2017)

    Article  MathSciNet  Google Scholar 

  31. L.C. Evans, Applications of nonlinear semigroup theory to certain partial differential equations, in Nonlinear Evolution Equations, ed. by M.G. Crandall (Academic, New York, 1978), pp. 163–188

    Google Scholar 

  32. G. Giacomin, J.L. Lebowitz, Phase segregation dynamics in particle systems with long range interaction I. Macroscopic limits. J. Stat. Phys. 87, 37–61 (1997)

    Article  MathSciNet  Google Scholar 

  33. G. Giacomin, J.L. Lebowitz, Phase segregation dynamics in particle systems with long range interaction II. Interface motion. SIAM J. Appl. Math. 58, 1707–29 (1998)

    Article  MathSciNet  Google Scholar 

  34. G. Giacomin, J.L. Lebowitz, R. Marra., Macroscopic evolution of particle systems with short and long-range interactions. Nonlinearity 13(6), 2143–2162 (2000)

    Article  MathSciNet  Google Scholar 

  35. J.A. Goldstein, Semigroups of Linear Operators and Applications. Oxford Mathematical Monographs (The Clarendon Press, Oxford University Press, New York, 1985)

    Google Scholar 

  36. A.K. Head., Dislocation group dynamics II. Similarity solutions of the continuum approximation. Phil. Mag. 26, 65–72 (1972)

    Article  Google Scholar 

  37. Y. Huang, Explicit Barenblatt profiles for fractional porous medium equations. Bull. Lond. Math. Soc. 46, 857–869 (2014)

    Article  MathSciNet  Google Scholar 

  38. L. Ignat, D. Stan, Asymptotic behavior of solutions to fractional diffusion convection equations. J. Lond. Math. Soc. 97(2), 258–281 (2018). https://doi.org/10.1112/jlms.12110

    Article  Google Scholar 

  39. C. Imbert, Finite speed of propagation for a non-local porous medium equation. Colloq. Math. 143(2), 149–157 (2016)

    Google Scholar 

  40. S. Kamenomostskaya (Kamin), On the Stefan problem. Mat. Sbornik 53, 489–514 (1961)

    Google Scholar 

  41. C. Kienzler, H. Koch, J.L. Vázquez, Flatness implies smoothness for solutions of the porous medium equation. Calc. Var. 57(1), 18 (2018)

    Google Scholar 

  42. H. Koch, Non-Euclidean singular integrals and the porous medium equation, University of Heidelberg, Habilitation Thesis, 1999. http://www.iwr.uniheidelberg.de/groups/amj/koch.html

  43. O.A. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations. Lezioni Lincee. Lincei Lectures (Cambridge University Press, Cambridge, 1991)

    Google Scholar 

  44. J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications (French). Travaux et Recherches Mathématiques, No. 17, 18, 20, vols. 1, 2, 3 (Dunod, Paris, 1968–1970) (2017)

    Google Scholar 

  45. S. Lisini, E. Mainini, A. Segatti, A gradient flow approach to the porous medium equation with fractional pressure. Arch. Ration. Mech. Anal. 227, 567 (2018). https://doi.org/10.1007/s00205-017-1168-2

    Article  MathSciNet  Google Scholar 

  46. L. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems. Modern Birkhäuser Classics (Birkhäuser/Springer Basel AG, Basel, 1995)

    MATH  Google Scholar 

  47. A.M. Meirmanov, The Stefan Problem. de Gruyter Expositions in Mathematics, 3 (Walter de Gruyter & Co., Berlin, 1992) (translated from the Russian)

    Google Scholar 

  48. Q.H. Nguyen, J.L. Vázquez, Porous medium equation with nonlocal pressure in a bounded domain. Preprint (2017). arXiv:1708.00660

    Google Scholar 

  49. L. Nirenberg. Ordinary differential equations in Banach spaces. (Original in Italian, C.I.M.E., 1963). Reprinted in “Abstract differential equations”, 123–170. C.I.M.E. Summer School 29 (Springer, Heidelberg, 2011)***

    Google Scholar 

  50. O.A. Oleinik, A.S. Kalashnikov, Y.-I. Chzou, The Cauchy problem and boundary problems for equations of the type of unsteady filtration. Izv. Akad. Nauk SSR Ser. Math. 22, 667–704 (1958)

    MATH  Google Scholar 

  51. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44 (Springer, New York, 1983)

    Google Scholar 

  52. J.M. Rakotoson, R. Temam, An optimal compactness theorem and application to elliptic-parabolic systems. Appl. Math. Lett. 14(3), 303–306 (2001)

    Article  MathSciNet  Google Scholar 

  53. J. Simon, Compact sets in the space L p(0, T; B). Ann. Mat. Pura Appl. 146, 65–96 (1987)

    Article  MathSciNet  Google Scholar 

  54. D. Stan, F. del Teso, J.L. Vázquez. Finite and infinite speed of propagation for porous medium equations with fractional pressure. C. R. Math. Acad. Sci. Paris 352(2), 123–128 (2014)

    Article  MathSciNet  Google Scholar 

  55. D. Stan, F. del Teso, J.L. Vázquez, Transformations of self-similar solutions for porous medium equations of fractional type. Nonlinear Anal. 119, 62–73 (2015)

    Article  MathSciNet  Google Scholar 

  56. D. Stan, F. del Teso, J.L. Vázquez, Finite and infinite speed of propagation for porous medium equations with nonlocal pressure. J. Differ. Equ. 260(2), 1154–1199 (2016)

    Article  MathSciNet  Google Scholar 

  57. D. Stan, F. del Teso, J.L. Vázquez, Existence of weak solutions for a general porous medium equation with nonlocal pressure (2017). arXiv:1609.05139

    Google Scholar 

  58. J.L. Vázquez, Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Oxford Lecture Series in Mathematics and Its Applications, vol. 33 (Oxford University Press, Oxford, 2006)

    Google Scholar 

  59. J.L. Vázquez, The Porous Medium Equation. Mathematical Theory. Oxford Mathematical Monographs (Oxford University Press, Oxford, 2007)

    Google Scholar 

  60. J.L. Vázquez, Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type. J. Eur. Math. Soc. (JEMS) 16(4), 769–803 (2014)

    Article  MathSciNet  Google Scholar 

  61. J.L. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, nonlinear elliptic and parabolic differential equations. Discrete Contin. Dyn. Syst. S7(4), 857–885 (2014)

    Article  Google Scholar 

  62. J.L. Vázquez, The mathematical theories of diffusion: nonlinear and fractional diffusion, in Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions, ed. by M. Bonforte, G. Grillo. Lecture Notes in Mathematics, vol. 2186. Fond. CIME/CIME Found. Subser. (Springer, Cham, 2017), pp. 205–278

    Chapter  Google Scholar 

  63. J.L. Vázquez, Asymptotic behaviour for the fractional heat equation in the Euclidean space, in Complex Variables and Elliptic Equations. Special Volume in Honor of Vladimir I. Smirnov’s 130th Anniversary. Published online in November 2017

    Google Scholar 

  64. J.L. Vázquez, B. Volzone, Optimal estimates for fractional fast diffusion equations. J. Math. Pures Appl. (9) 103(2), 535–556 (2015)

    Article  MathSciNet  Google Scholar 

  65. J.L. Vázquez, A. de Pablo, F. Quirós, A. Rodríguez, Classical solutions and higher regularity for nonlinear fractional diffusion equations. J. Eur. Math. Soc. 19(7), 1949–1975 (2017)

    Article  MathSciNet  Google Scholar 

  66. K. Yosida, Functional Analysis. Die Grundlehren der Mathematischen Wissenschaften (Springer, Berlin, 1965)

    Google Scholar 

  67. X. Zhou, W. Xiao, J. Chen. Fractional porous medium and mean field equations in Besov spaces. Electron. J. Differ. Equ. 199, 14 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Spanish Project MTM2014-52240-P. D. Stan is partially supported by the MEC-Juan de la Cierva postdoctoral fellowship number FJCI-2015-25797, by the ERCEA Advanced Grant 2014 669689—HADE, by the MINECO project MTM2014-53850-P, by Basque Government project IT-641-13 and also by the Basque Government through the BERC 2014–2017 program, and by Spanish Ministry of Economy and Competitiveness MINECO: BCAM Severo Ochoa excellence accreditation SEV-2013-0323. F.d.Teso is partially supported by the Toppforsk (research excellence) project Waves and Nonlinear Phenomena (WaNP), grant no. 250070 from the Research Council of Norway and by the ERCIM “Alain Bensoussan” Fellowship programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Luis Vázquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stan, D., del Teso, F., Vázquez, J.L. (2018). Porous Medium Equation with Nonlocal Pressure. In: Rassias, T. (eds) Current Research in Nonlinear Analysis. Springer Optimization and Its Applications, vol 135. Springer, Cham. https://doi.org/10.1007/978-3-319-89800-1_12

Download citation

Publish with us

Policies and ethics