Skip to main content

Anisotropic Surface Measures as Limits of Volume Fractions

  • Chapter
  • First Online:
Current Research in Nonlinear Analysis

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 135))

Abstract

In this paper we consider the new characterization of the perimeter of a measurable set in \(\mathbb {R}^{n}\) recently studied by Ambrosio, Bourgain, Brezis and Figalli. We modify their approach by using, instead of cubes, covering families made by translations of a given open bounded set with Lipschitz boundary. We show that the new functionals converge to an anisotropic surface measure, which is indeed a multiple of the perimeter if we allow for isotropic coverings (e.g. balls or arbitrary rotations of the given set). This result underlines that the particular geometry of the covering sets is not essential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Without loss of generality, we can always assume 0 ∈ D ⊂ C.

  2. 2.

    If ν 2 = 0, the length is 2εb.

References

  1. L. Ambrosio, H. Brezis, J. Bourgain, A. Figalli, BMO-type norms related to the perimeter of sets. Comm. Pure Appl. Math. 69, 1062–1086 (2016)

    Article  MathSciNet  Google Scholar 

  2. L. Ambrosio, H. Brezis, J. Bourgain, A. Figalli, Perimeter of sets and BMO-type norms. C.R. Math. CRAS 352, 697–698 (2014)

    Google Scholar 

  3. L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems (Oxford University Press, Oxford, 2000)

    Google Scholar 

  4. J. Bourgain, H. Brezis, P. Mironescu, Another look at Sobolev spaces, in Optimal Control and Partial Differential Equations ed. by J.L. Menaldi, E. Rofman, A. Sulem. A Volume in Honour of A. Bensoussan’s 60th Birthday (IOS Press, Amsterdam, 2001), pp. 439–455

    Google Scholar 

  5. J. Bourgain, H. Brezis, P. Mironescu, A new function space and applications. J. Eur. Math. Soc. 17, 2083–2101 (2015)

    Article  MathSciNet  Google Scholar 

  6. H. Brezis, H.M. Nguyen, Two subtle convex nonlocal approximation of the BV norm. Nonlinear Anal. 137, 222–245 (2016)

    Google Scholar 

  7. H. Brezis, H.M. Nguyen, Non-local functionals related to the total variation and connections with image processing. Annals of PDE 4.1. 9 (2016)

    Google Scholar 

  8. L. Caffarelli, J.M. Roquejoffre, O. Savin, Nonlocal minimal surfaces. Commun. Pure Appl. Math. 63, 1111–1144 (2010)

    Google Scholar 

  9. A. Cianchi, A sharp form of Poincaré type inequalities on balls and spheres. Z. Angew. Math. Phys. 40(4), 558–569 (1989)

    Google Scholar 

  10. G. Dal Maso, An Introduction to Γ-Convergence (Birkhauser, Boston, 1993)

    Chapter  Google Scholar 

  11. N. Fusco, C. Sbordone, G. Moscariello, A formula for the total variation of SBV functions. J. Funct. Anal. 270, 419–446 (2016)

    Article  MathSciNet  Google Scholar 

  12. N. Fusco, C. Sbordone, G. Moscariello, BMO-type seminorms and Sobolev functions. ESAIM: Control, Optimisation and Calculus of Variations (2017)

    Google Scholar 

  13. T.C. Hales, Cannonballs and honeycombs. Not. Am. Math. Soc. 47, 440–449 (2000)

    MathSciNet  MATH  Google Scholar 

  14. T.C. Hales, A proof of the Kepler conjecture. Ann. Math. 162, 1065–1185 (2005)

    Article  MathSciNet  Google Scholar 

  15. A.P. Morse, Perfect blankets. Trans. Am. Math. Soc. 61, 418–442 (1947)

    Article  MathSciNet  Google Scholar 

  16. H.M. Nguyen, Γ-convergence, Sobolev norms, and BV  functions. Duke Math. J. 157, 495–533 (2011)

    Article  MathSciNet  Google Scholar 

  17. G.C. Szpiro, Kepler’s Conjecture (Wiley, Hoboken, 2003)

    MATH  Google Scholar 

  18. A. Thue, Über die dichteste Zusammenstellung von kongruenten Kreisen in einer Ebene. Videnskabs-Selskabets Skrifter. I. Math.-Naturv. Klasse, No. 1 (Stanford University, Stanford, 1910), pp. 1–9

    Google Scholar 

  19. L.F. Toth, Über die dichteste Kugellagerung. Math. Z. 48, 676–684 (1943)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Emanuele Paolini for fruitful discussions concerning the examples of anisotropic coverings (Sect. 4.3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Ambrosio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ambrosio, L., Comi, G.E. (2018). Anisotropic Surface Measures as Limits of Volume Fractions. In: Rassias, T. (eds) Current Research in Nonlinear Analysis. Springer Optimization and Its Applications, vol 135. Springer, Cham. https://doi.org/10.1007/978-3-319-89800-1_1

Download citation

Publish with us

Policies and ethics