Skip to main content

Borromean Link in Relativity Theory What Is the Validity Domain of Einstein’s Field Equations? Sheaf-Theoretic Distributional Solutions over Singularities and Topological Links in Geometrodynamics

  • Chapter
  • First Online:
Concept and Formalization of Constellatory Self-Unfolding

Part of the book series: On Thinking ((ONTHINKING))

  • 311 Accesses

Abstract

One hundred years after Einstein’s initial conception and formulation of the General Theory of Relativity, it still remains a vibrant subject of intense research and formidable depth. In this way, during all these years our understanding of gravitation in differential geometric terms is being continuously refined. We believe that one of the highest priorities of a centennial perspective on General Relativity should be a careful re-examination of the validity domain of Einstein’s field equations. These equations constitute the irreducible kernel of General Relativity and the possibility of retaining the form of Einstein’s equations, while concurrently extending their domain of validity is promising for shedding new light to old problems and guiding toward their effective resolution. These problems are primarily related with the following perennial issues: (a) the smooth manifold background of the theory, (b) the existence of singular loci in spacetime where the metric breaks down or the curvature blows up, and (c) the non-geometric nature of the second part of Einstein’s equations involving the energy-momentum tensor. It turns out that these problems are intrinsically related to each other and require a critical re-thinking of the initial assumptions referring to the domain of validity of Einstein’s equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnowitt R, Deser S, Misner CW (1962) The dynamics of general relativity. In: Witten L (ed) Gravitation: an introduction to current research. Wiley, New York, pp 227–265

    Google Scholar 

  • Bosshard B (1976) On the b-Boundary of the closed Friedmann models. Commun Math Phys 46:263–268

    Google Scholar 

  • Clarke CJS (1993) The analysis of space-time singularities. Cambridge University Press, Cambridge

    Google Scholar 

  • Cromwell P, Beltrami E, Rampichini M (1998) The Borromean rings. Math Intell 20(1):53–62

    Google Scholar 

  • Debrunner H (1961) Links of Brunnian type. Duke Math J 28:17–23

    Article  MathSciNet  Google Scholar 

  • Einstein A (1956) The meaning of relativity, 5th edn. Princeton University Press, Princeton

    Google Scholar 

  • Epperson M, Zafiris E (2013) Foundations of relational realism: a topological approach to quantum mechanics and the philosophy of nature. Lexington Books, Lanham

    Google Scholar 

  • Fragoulopoulou M, Papatriantafillou MH (2014) Smooth manifolds vs. differential triads. Rev Roum Math Pures Appl 59:203–217

    Google Scholar 

  • Gannon D (1975) Singularities in nonsimply connected space-times. J Math Phys 16(12):2364–2367

    Article  ADS  MathSciNet  Google Scholar 

  • Geroch R (1972) Einstein algebras. Commun Math Phys 26(4):271–275

    Article  ADS  MathSciNet  Google Scholar 

  • Grothendieck A (1957) Sur quelques points d’ algèbre homologique. Tôhoku Math J 9:119–221

    Google Scholar 

  • Grothendieck A (1958) A general theory of fiber spaces with structure sheaf. University of Kansas, Department of Mathematics, Lawrence

    Google Scholar 

  • Hatcher A (2002) Algebraic topology. Cambridge University Press, Cambridge

    Google Scholar 

  • Hawking SW, Ellis GFR (1973) The large scale structure of space-time. Cambridge University Press, Cambridge

    Google Scholar 

  • Heller M, Sasin W (1995) Structured spaces and their application to relativistic physics. J Math Phys 36:3644–3662

    Article  ADS  MathSciNet  Google Scholar 

  • Hilden H M, Losano MT, Montesinos JM, Whitten W (1987) On universal groups and 3-manifolds. Invent Math 87:441–456

    Article  ADS  MathSciNet  Google Scholar 

  • Jammer M (1993) Concepts of space: the history of theories of space in physics; foreword by Albert Einstein, 3rd edn. Dover, New York

    Google Scholar 

  • Kawauchi A (1996) A survey of knot theory. Birkhäuser, Boston

    Chapter  Google Scholar 

  • Lindström B, Zetterström H-O (1991) Borromean circles are impossible. Am Math Mon 98(4):340–341

    Article  MathSciNet  Google Scholar 

  • Mallios A (1993a) On geometric topological algebras. J Math Anal Appl 172:301–322

    Article  MathSciNet  Google Scholar 

  • Mallios A (1993b) The de Rham-Kähler complex of the Gelfand sheaf of a topological algebra. J Math Anal Appl 175:143–168

    Article  MathSciNet  Google Scholar 

  • Mallios A (1998a) Geometry of vector sheaves: an axiomatic approach to differential geometry, vol I: vector sheaves, general theory. Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  • Mallios A (1998b) Geometry of vector sheaves: an axiomatic approach to differential geometry, vol II: geometry examples and applications. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Mallios A (2004) On localizing topological algebras. Constr Mater 341:79

    Google Scholar 

  • Mallios A (2006a) Quantum gravity and “singularities”. Note di Matematica 25:57

    Google Scholar 

  • Mallios A (2006b) Geometry and physics today. Int J Theor Phys 45(8):1557

    Article  ADS  MathSciNet  Google Scholar 

  • Mallios A (2006c) Modern differential geometry in gauge theories: vol 1. Maxwell fields. Birkhäuser, Boston

    Google Scholar 

  • Mallios A (2007) On algebra spaces. Contemp Math 427:263

    Article  Google Scholar 

  • Mallios A (2008) A-invariance: an axiomatic approach to quantum relativity. Int J Theor Phys 47(7):1929–1948

    Article  MathSciNet  Google Scholar 

  • Mallios A (2009) Modern differential geometry in gauge theories: vol. 2. Yang-Mills fields. Birkhäuser, Boston

    Chapter  Google Scholar 

  • Mallios A, Raptis I (2003) Finitary, causal and quantal vacuum Einstein gravity. Int J Theor Phys 42:1479

    Article  MathSciNet  Google Scholar 

  • Mallios A, Rosinger EE (1999) Abstract differential geometry, differential algebras of generalized functions, and de Rham cohomology. Acta Appl Math 55:231

    Article  MathSciNet  Google Scholar 

  • Mallios A, Rosinger EE (2001) Space-Time foam dense singularities and de Rham cohomology. Acta Appl Math 67:59

    Article  MathSciNet  Google Scholar 

  • Mallios A, Zafiris E (2016) Differential sheaves and connections: a natural approach to physical geometry. World Scientific, Singapore

    MATH  Google Scholar 

  • Misner CW, Wheeler JA (1957) Classical physics as geometry: gravitation, electromagnetism, unquantized charge, and mass as properties of empty space. Ann Phys 2:525–603

    Article  ADS  MathSciNet  Google Scholar 

  • Misner CW, Thorne KS, Wheeler JA (1970) Gravitation. W.H. Freeman and Company, New York

    Google Scholar 

  • Raptis I (2006) Finitary-algebraic “resolution” of the inner Schwartzschild singularity. Int J Theor Phys 45:79–128

    Article  MathSciNet  Google Scholar 

  • Raptis I (2007) A dodecalogue of basic didactics from applications of abstract differential geometry to quantum gravity. Int J Theor Phys 46:3009–3021

    Article  MathSciNet  Google Scholar 

  • Rosinger EE (1978) Distributions and nonlinear partial differential equations. Springer Lecture notes in mathematics, vol 684. Springer, New York

    Book  Google Scholar 

  • Rosinger EE (1980) Nonlinear partial differential equations, sequential and weak solutions. North Holland mathematics studies, vol 44. North-Holland, Amsterdam

    Google Scholar 

  • Rosinger EE (1987) Generalized solutions of nonlinear partial differential equations. North Holland mathematics studies, vol 146. North-Holland, Amsterdam

    Google Scholar 

  • Rosinger EE (1990) Nonlinear partial differential equations, an algebraic view of generalized solutions. North Holland mathematics studies, vol 164. North-Holland, Amsterdam

    Google Scholar 

  • Rosinger EE (2001) How to solve smooth nonlinear PDEs in algebras of generalized functions with dense singularities. Appl Anal 78:355–378

    Article  MathSciNet  Google Scholar 

  • Rosinger EE (2007) Differential algebras with dense singularities on manifolds. Acta Appl Math 95:233–256

    Article  MathSciNet  Google Scholar 

  • Schmidt BG (1971) A new definition of singular points in general relativity. Gen Relativ Gravit 1:269–280

    Article  ADS  MathSciNet  Google Scholar 

  • Scorpan A (2005) The wild world of 4-manifolds. American Mathematical Society, Providence

    MATH  Google Scholar 

  • Selesnick SA (1976) Line bundles and harmonic analysis on compact groups. Math Z 146:53–67

    Article  MathSciNet  Google Scholar 

  • Vassiliou E (2004) Geometry of principal sheaves. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  • Vishwakarma RG (2014) Mysteries of R ik  = 0: a novel paradigm in Einstein’s theory of gravitation. Front Phys 9:98–112

    Google Scholar 

  • von Müller A (2015) The forgotten present. In: von Müller A, Filk T (eds) Re-thinking time at the interface of physics and philosophy. Springer, Heidelberg, pp 1–46

    Chapter  Google Scholar 

  • Weyl H (2009) Philosophy of mathematics and natural science. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Wheeler JA (1957) On the nature of quantum geometrodynamics. Ann Phys 2:604–614

    Article  ADS  Google Scholar 

  • Zafiris E (2004a) Boolean coverings of quantum observable structure: a setting for an abstract differential geometric mechanism. J Geom Phys 50(1–4):99–114

    Article  ADS  MathSciNet  Google Scholar 

  • Zafiris E (2004b) Interpreting observables in a quantum world from the categorial standpoint. Int J Theor Phys 43(1):265–298

    Article  MathSciNet  Google Scholar 

  • Zafiris E (2007) Quantum observables algebras and abstract differential geometry: the topos-theoretic dynamics of diagrams of commutative algebraic localizations. Int J Theor Phys 46(2):319–382

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

von Müller, A., Zafiris, E. (2018). Borromean Link in Relativity Theory What Is the Validity Domain of Einstein’s Field Equations? Sheaf-Theoretic Distributional Solutions over Singularities and Topological Links in Geometrodynamics. In: Concept and Formalization of Constellatory Self-Unfolding. On Thinking. Springer, Cham. https://doi.org/10.1007/978-3-319-89776-9_5

Download citation

Publish with us

Policies and ethics