Wheals and Eczema: Pathogenic Mechanism in Immediate Contact Reactions

  • Eduardo Rozas-Muñoz
  • Esther Serra-Baldrich
Part of the Updates in Clinical Dermatology book series (UCD)


Immediate contact reactions are a heterogeneous group of inflammatory conditions characterized by two main clinical presentations: contact urticaria (CoU) for patients presenting with wheals/angioedema, and protein contact dermatitis (PCD) for patients presenting with predominantly dermatitis/eczema. Generalized lesions or systemic symptoms are feasible also in the contact urticaria syndrome (CUS). This chapter summarizes the most important aspects regarding the mechanisms of these two conditions. Nonimmunological, immunological, and uncertain mechanisms have been proposed as possible pathogenic mechanisms in CoU, and an immunological mechanism involving a combination of type I and type IV allergic skin reactions has been proposed in PCD. Understanding the possible mechanisms will help our approach to the different clinical manifestations and diagnostic procedures performed to confirm the diagnosis.


Protein contact dermatitis Contact urticaria Contact urticaria syndrome Dermatitis Eczema Immediate contact reactions 


  1. 1.
    Maibach HI, Johnson HL. Contact urticaria syndrome. Contact urticaria to diethyltoluamide (immediate-type hypersensitivity). Arch Dermatol. 1975;111(6):726–30.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Gimenez-Arnau A, Maurer M, De La Cuadra J, Maibach H. Immediate contact skin reactions, an update of contact urticaria, contact urticaria syndrome and protein contact dermatitis “A Never Ending Story”. Eur J Dermatol. 2010;20(5):552–62.PubMedGoogle Scholar
  3. 3.
    Harvell J, Bason M, Maibach H. Contact urticaria and its mechanisms. Food Chem Toxicol. 1994, February;32(2):103–12.CrossRefPubMedGoogle Scholar
  4. 4.
    Ylipieti S, Lahti A. Effect of the vehicle on non-immunologic immediate contact reactions. Contact Dermatitis. 1989;21(2):105–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Lahti A, Poutiainen AM, Hannuksela M. Alcohol vehicles in tests for non-immunological immediate contact reactions. Contact Dermatitis. 1993;29(1):22–5.CrossRefPubMedGoogle Scholar
  6. 6.
    Hannuksela A, Lahti A, Hannuksela M. Nonimmunologic immediate contact reactions to three isomers of pyridine carboxaldehyde. In: Frosch PJ, Dooms-Goossens A, Lachapelle J-M, Rycroft RJG, Scheper RJ, editors. Current topics in contact dermatitis. Berlin/Heidelberg/New York: Springer; 1989. p. 448–52.CrossRefGoogle Scholar
  7. 7.
    Lahti A. Non-immunologic contact urticaria. Acta Derm Venereol Suppl (Stockh). 1980;91(Suppl):1–49.Google Scholar
  8. 8.
    Basketter DA, Wilhelm KP. Studies on non-immune immediate contact reactions in an unselected population. Contact Dermatitis. 1996;35(4):237–40.CrossRefPubMedGoogle Scholar
  9. 9.
    Larmi E, Lahti A, Hannuksela M. Immediate contact reactions to benzoic acid and the sodium salt of pyrrolidone carboxylic acid. comparison of various skin sites. Contact Dermatitis. 1989;20(1):38–40.CrossRefPubMedGoogle Scholar
  10. 10.
    Lahti A, Pylvänen V, Hannuksela M. Immediate irritant reactions to benzoic acid are enhanced in washed skin areas. Contact Dermatitis. 1995;33(3):177–82.CrossRefPubMedGoogle Scholar
  11. 11.
    Gollhausen R, Kligman AM. Human assay for identifying substances which induce non-allergic contact urticaria: the NICU-test. Contact Dermatitis. 1985;13(2):98–106.CrossRefPubMedGoogle Scholar
  12. 12.
    von Krogh G, Maibach HI. The contact urticaria syndrome–an updated review. J Am Acad Dermatol. 1981;5(3):328–42.CrossRefGoogle Scholar
  13. 13.
    Lahti A. Terfenadine does not inhibit non-immunologic contact urticaria. Contact Dermatitis. 1987;16(4):220–3.CrossRefPubMedGoogle Scholar
  14. 14.
    Lahti A, Oikarinen A, Viinikka L, Ylikorkala O, Hannuksela M. Prostaglandins in contact urticaria induced by benzoic acid. Acta Derm Venereol. 1983;63(5):425–7.PubMedGoogle Scholar
  15. 15.
    Lahti A, Väänänen A, Kokkonen EL, Hannuksela M. Acetylsalicylic acid inhibits non-immunologic contact urticaria. Contact Dermatitis. 1987;16(3):133–5.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Johansson J, Lahti A. Topical non-steroidal anti-inflammatory drugs inhibit non-immunologic immediate contact reactions. Contact Dermatitis. 1988;19(3):161–5.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kujala T, Lahti A. Duration of inhibition of non-immunologic immediate contact reactions by acetylsalicylic acid. Contact Dermatitis. 1989;21(1):60–1.CrossRefPubMedGoogle Scholar
  18. 18.
    Wallengren J. Substance P antagonist inhibits immediate and delayed type cutaneous hypersensitivity reactions. Br J Dermatol. 1991;124(4):324–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Cheng K, Wu TJ, Wu KK, Sturino C, Metters K, Gottesdiener K, et al. Antagonism of the prostaglandin D2 receptor 1 suppresses nicotinic acid-induced vasodilation in mice and humans. Proc Natl Acad Sci U S A. 2006;103(17):6682–7.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ruzicka T, Auböck J. Arachidonic acid metabolism in guinea pig Langerhans cells: studies on cyclooxygenase and lipoxygenase pathways. J Immunol. 1987;138(2):539–43.PubMedGoogle Scholar
  21. 21.
    Morrow JD, Awad JA, Oates JA, Roberts LJ 2nd. Identification of skin as a major site of prostaglandin D2 release following oral administration of niacin in humans. J Invest Dermatol. 1992;98(5):812–5.CrossRefPubMedGoogle Scholar
  22. 22.
    Morrow JD, Minton TA, Awad JA, Roberts LJ. Release of markedly increased quantities of prostaglandin D2 from the skin in vivo in humans following the application of sorbic acid. Arch Dermatol. 1994;130(11):1408–12.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Downard CD, Roberts LJ 2nd, Morrow JD. Topical benzoic acid induces the increased biosynthesis of prostaglandin D2 in human skin in vivo. Clin Pharmacol Ther. 1995;57(4):441–5.CrossRefPubMedGoogle Scholar
  24. 24.
    Urade Y, Ujihara M, Horiguchi Y, Ikai K, Hayaishi O. The major source of endogenous prostaglandin D2 production is likely antigen-presenting cells. localization of glutathione-requiring prostaglandin D synthetase in histiocytes, dendritic, and Kupffer cells in various rat tissues. J Immunol. 1989;143(9):2982–9.PubMedGoogle Scholar
  25. 25.
    Larkò O, Lindstedt G, Lundberg PA, Mobacken H. Biochemical and clinical studies in a case of contact urticaria to potato. Contact Dermatitis. 1983;9(2):108–14.CrossRefPubMedGoogle Scholar
  26. 26.
    Lewis RA, Austen KF. Mediation of local homeostasis and inflammation by leukotrienes and other mast cell-dependent compounds. Nature. 1981;293(5828):103–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Schwartz LB, Austen KF. Structure and function of the chemical mediators of mast cells. Prog Allergy. 1984;34:271–321.PubMedGoogle Scholar
  28. 28.
    Wallengren J, Ekman R, Möller H. Substance P and vasoactive intestinal peptide in bullous and inflammatory skin disease. Acta Derm Venereol. 1986;66(1):23–8.PubMedGoogle Scholar
  29. 29.
    Sabroe RA, Greaves MW. The pathogenesis of chronic idiopathic urticaria. Arch Dermatol. 1997;133(8):1003–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Bernstein JE, Swift RM, Soltani K, Lorincz AL. Inhibition of axon reflex vasodilatation by topically applied capsaicin. J Invest Dermatol. 1981;76(5):394–5.CrossRefPubMedGoogle Scholar
  31. 31.
    Larmi E, Lahti A, Hannuksela M. Effects of capsaicin and topical anesthesia on nonimmunologic immediate contact reactions to benzoic acid and methyl nicotinate. In: Frosch PJ, Dooms-Goossens A, Lachapelle J-M, Rycroft RJG, Scheper RJ, editors. Current topics in contact dermatitis. Berlin/Heidelberg/New York: Springer; 1989. p. 441–7.CrossRefGoogle Scholar
  32. 32.
    Lundblad L, Lundberg JM, Anggård A, Zetterström O. Capsaicin-sensitive nerves and the cutaneous allergy reaction in man. possible involvement of sensory neuropeptides in the flare reaction. Allergy. 1987;42(1):20–5.CrossRefPubMedGoogle Scholar
  33. 33.
    Larmi E, Lahti A, Hannuksela M. Ultraviolet light inhibits nonimmunologic immediate contact reactions to benzoic acid. Arch Dermatol Res. 1988;280(7):420–3.CrossRefPubMedGoogle Scholar
  34. 34.
    Czarnetzki BM, Rosenbach T, Kolde G, Frosch PJ. Phototherapy of urticaria pigmentosa: clinical response and changes of cutaneous reactivity, histamine and chemotactic leukotrienes. Arch Dermatol Res. 1985;277(2):105–13.CrossRefPubMedGoogle Scholar
  35. 35.
    Kolde G, Frosch PJ, Czarnetzki BM. Response of cutaneous mast cells to PUVA in patients with urticaria pigmentosa: histomorphometric, ultrastructural, and biochemical investigations. J Invest Dermatol. 1984;83(3):175–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Larmi E. Systemic effect of ultraviolet irradiation on non-immunologic immediate contact reactions to benzoic acid and methyl nicotinate. Acta Derm Venereol. 1989;69(4):296–301.PubMedGoogle Scholar
  37. 37.
    Larmi E. PUVA treatment inhibits nonimmunologic immediate contact reactions to benzoic acid and methyl nicotinate. Int J Dermatol. 1989;28(9):609–11.CrossRefPubMedGoogle Scholar
  38. 38.
    Larmi E, Lahti A, Hannuksela M. Effect of ultraviolet B on nonimmunologic contact reactions induced by dimethyl sulphoxide, phenol and sodium lauryl sulphate. Photo-Dermatology. 1989;6(6):258–62.PubMedGoogle Scholar
  39. 39.
    Lahti A. Immediate contact reactions. In: Rycroft RJG, Menné T, Frosch PJ, editors. Textbook of contact dermatitis. Berlin: Springer; 1995. p. 68–72.Google Scholar
  40. 40.
    Kraft S, Wessendorf JH, Hanau D, Bieber T. Regulation of the high affinity receptor for IgE on human epidermal Langerhans cells. J Immunol. 1998;161(2):1000–6.PubMedGoogle Scholar
  41. 41.
    Capron M, Capron A, Dessaint JP, Torpier G, Johansson SG, Prin L. Fc receptors for IgE on human and rat eosinophils. J Immunol. 1981;126(6):2087–92.PubMedGoogle Scholar
  42. 42.
    Spiegelberg HL. Structure and function of Fc receptors for IgE on lymphocytes, monocytes, and macrophages. Adv Immunol. 1984;35:61–88. ReviewCrossRefPubMedGoogle Scholar
  43. 43.
    Boltansky H, Kaliner MA. Cells demonstrating Fc receptors for IgE. Surv Immunol Res. 1984;3(2–3):99–102.PubMedGoogle Scholar
  44. 44.
    Yodoi J, Ishizaka K. Lymphocytes bearing Fc receptors for IgE. I. presence of human and rat T lymphocytes with Fc epsilon receptors. J Immunol. 1979;122(6):2577–83.PubMedGoogle Scholar
  45. 45.
    Joseph M, Auriault C, Capron A, Vorng H, Viens P. A new function for platelets: IgE-dependent killing of schistosomes. Nature. 1983;303(5920):810–2.CrossRefPubMedGoogle Scholar
  46. 46.
    Garssen J, Vandebriel RJ, Kimber I, van Loveren H. Hypersensitivity reactions: definitions, basic mechanisms and localizations. In: Vos JG, Younes M, Smith E, editors. Allergic hypersensitivities induced by chemicals, recommendations for prevention. Boca Raton: CRC Press; 1996. p. 19–58.Google Scholar
  47. 47.
    Finkelman FD, Katona IM, Urban JF Jr, Holmes J, Ohara J, Tung AS, Sample JV, et al. IL-4 is required to generate and sustain in vivo IgE responses. J Immunol. 1988;141(7):2335–41.PubMedGoogle Scholar
  48. 48.
    Ricci M, Matucci A, Rossi OT. Cells, cytokines, IgE and allergic airways inflammation. J Investig Allergol Clin Immunol. 1994;4(5):214–20.PubMedGoogle Scholar
  49. 49.
    Hsieh KY, Tsai CC, Wu CH, Lin RH. Epicutaneous exposure to protein antigen and food allergy. Clin Exp Allergy. 2003;33(8):1067–75.CrossRefPubMedGoogle Scholar
  50. 50.
    Li XM, Kleiner G, Huang CK, Lee SY, Schofield B, Soter NA, et al. Murine model of atopic dermatitis associated with food hypersensitivity. J Allergy Clin Immunol. 2001;107(4):693–702.CrossRefPubMedGoogle Scholar
  51. 51.
    Strid J, Hourihane J, Kimber I, Callard R, Strobel S. Disruption of the stratum corneum allows potent epicutaneous immunization with protein antigens resulting in a dominant systemic Th2 response. Eur J Immunol. 2004;34(8):2100–9.CrossRefPubMedGoogle Scholar
  52. 52.
    Williams HC. Clinical practice. Atopic dermatitis. N Engl J Med. 2005;352(22):2314–24.CrossRefPubMedGoogle Scholar
  53. 53.
    Hjorth N, Roed-Petersen J. Occupational protein contact dermatitis in food handlers. Contact Dermatitis. 1976;2:28–42.CrossRefPubMedGoogle Scholar
  54. 54.
    Veien NK, Hattel T, Justresen O, Northolm A. Causes of eczema in the food industry. Dermatosen in Beruf und Umwelt. Occup Environ Dermatoses. 1983;31:84–6.Google Scholar
  55. 55.
    Levin C, Warshaw E. Protein contact dermatitis: allergens, pathogenesis and management. Dermatitis. 2008;19(5):241–51.PubMedGoogle Scholar
  56. 56.
    Mulder PGH, Munte K, Devillers ACA, et al. Diagnostic tests in children with atopic dermatitis and food allergy. Allergy. 1998;53:1087–91.CrossRefPubMedGoogle Scholar
  57. 57.
    Kanerva L, Pajari-Backas M. IgE-mediated RAST-negative occupa-tional protein contact dermatitis from taxonomically unrelated fish species. Contact Dermatitis. 1999;41:295–6.CrossRefPubMedGoogle Scholar
  58. 58.
    Janssens V, Morren M, Dooms Goossens A, DeGreef H. Protein contact dermatitis, myth or reality. Br J Dermatol. 1995;132:1–6.CrossRefPubMedGoogle Scholar
  59. 59.
    Barbaud A, Poreaux C, Penven E, Waton J. Occupational protein contact dermatitis. Eur J Dermatol. 2015;25(6):527–34.PubMedGoogle Scholar
  60. 60.
    Haas N, Hamann K, Grabbe J, et al. Expression of the high affinity IgE-receptor on human Langerhans’ cells. Elucidating the role of epidermal IgE in atopic eczema. Acta Derm Venereol. 1992;72:271–2.PubMedGoogle Scholar
  61. 61.
    Vester L, Thyssen JP, Menné T, Johansen JD. Occupational food-related hand dermatoses seen over a 10 year period. Contact Dermatitis. 2012;66:264–7.CrossRefPubMedGoogle Scholar
  62. 62.
    Koch S, Kohl K, Klein E, et al. Skin homing of Langerhans cell precursors: adhesion, chemotaxis, and migration. J Allergy Clin Immunol. 2006;117:163–8.CrossRefPubMedGoogle Scholar
  63. 63.
    Homey B, Steinhoff M, Ruzicka T, Leung DY. Cytokines and chemokines orchestrate atopic skin inflammation. J Allergy Clin Immunol. 2006;118:178–89.CrossRefPubMedGoogle Scholar
  64. 64.
    Choi W, Lee J, Kim J, Kim Y, Tae G. Efficient skin permeation of soluble proteins via flexible and functional nano-carrier. J Control Release. 2012;157:272–8.CrossRefPubMedGoogle Scholar
  65. 65.
    Berardesca E, Barbareschi M, Veraldi S, Pimpinelli N. Evaluation of efficacy of a skin lipid mixture in patients with irritant contact dermatitis, allergic contact dermatitis or atopic dermatitis : a multicenter study. Contact Dermatitis. 2001;45:280–5.CrossRefPubMedGoogle Scholar
  66. 66.
    Yokouchi M, Kubo A, Kawasaki H, Yoshida K, Ishii K, Furuse M, Amagai M. Epidermal tight junction barrier function is altered by skin inflammation, but not by filaggrin-deficient stratum corneum. J Dermatol Sci. 2015;77(1):28–36.CrossRefPubMedGoogle Scholar
  67. 67.
    Wang LF, Lin JY, Hsieh KH, Lin RH. Epicutaneous exposure of protein antigen induces a predominant TH2-like response with high IgE production in mice. J Immunol. 1996;156:4079–82.Google Scholar
  68. 68.
    Furuse M, Hata M, Furuse K, Yoshida Y, Haratake A, Sugitani Y, Noda T, Kubo A, Tsukita S. Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol. 2002;156:1099–111.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    I-Lin L, Li-Fang W. Epicutaneous sensitization with protein antigen. Dermatol Sin. 2012;30:154–9.CrossRefGoogle Scholar
  70. 70.
    He R, Oyoshi MK, Wang JY, Hodge MR, Jin H, Geha RS. The prostaglandin D2 receptor CRTH2 is important for allergic skin inflammation after epicutaneous antigen challenge. J Allergy Clin Immunol. 2010;126:784.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Hänel KH, Pfaff CM, Cornelissen C, Amann PM, Marquardt Y, Czaja K, et al. Control of the physical and antimicrobial skin barrier by an IL-31-IL-1 Signaling network. J Immunol. 2016;196(8):3233–44.CrossRefPubMedGoogle Scholar
  72. 72.
    Spergel JM, Mizoguchi E, Brewer JP, Martin TR, Bhan AK, Geha RS. Epicutaneous sensitization with protein antigen induces localized allergic dermatitis and hyperresponsiveness to methacholine after single exposure to aerosolized antigen in mice. J Clin Invest. 1998;101:1614.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Spergel JM, Mizoguchi E, Oettgen H, Bhan AK, Geha RS. Roles of TH1 and TH2 cytokines in a murine model of allergic dermatitis. J Clin Invest. 1999;103:1103.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Bruijnzeel-Koomen C. Food induced skin diseases. Environ Toxicol Pharmacol. 1997;4(1–2):39–41.CrossRefPubMedGoogle Scholar
  75. 75.
    Inomata N, Nagashima M, Hakuta A, Aihara M. Food allergy preceded by contact urticaria due to the same food: involvement of epicutaneous sensitization in food allergy. Allergol Int. 2015;64(1):73–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Eduardo Rozas-Muñoz
    • 1
  • Esther Serra-Baldrich
    • 1
  1. 1.Department of DermatologyHospital de la Santa Creu i Sant PauBarcelonaSpain

Personalised recommendations