Skip to main content

The Interaction of Mesoscopic Interior Boundaries of the Material

  • Chapter
  • First Online:
The Selected Models of the Mesostructure of Composites

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

  • 253 Accesses

Abstract

In experimental and theoretical studies of internal boundaries and their role in the formation of properties of composite materials, much attention was paid to the influence of interphase and intergranular boundaries on the physicochemical and mechanical properties of matter. The brief review of the papers presented in this monograph allows us to delineate the range of problems and get an idea of phenomena in which internal boundaries are of decisive importance for explaining the properties of composites.In the third chapter of the monograph, a description of the analytical model of a multiscale network of matter interior boundaries is given. In this model, expressions for calculating the force fields of the Sierpinski prefractal and its modifications are derived. The model makes it possible to calculate the force fields of interior boundaries of an arbitrary shape as a superposition of the different prefractals’ fields. Relations for calculating such fields can be applied to the entire range of network sizes, in which there is self-similarity of interior boundaries. A computer stochastic model for the evolution of abstract systems with interacting subsystems is also proposed. It is used to study the properties of energy exchange processes between interior boundaries. It is assumed that the material structure is an open nonlinear dynamic system with interacting interior boundaries of three scale levels. The evolution of the energy state of the composites’ interior boundaries is described by a system of bilinear iterative equations. In the model, strange attractors arising in the phase space of interior boundaries’ energy are investigated. Attractors can be interpreted as stochastic self-oscillations supported in a dynamic system by an external source. They also can be interpreted as Lissajous figures of quasi-oscillatory processes. This opens the possibility of a visual determination of the nature and features of the different scale inhomogeneities’ interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haken, H.: Synergetic. Introduction and Advanced Topics. Springer, Berlin (2004)

    Google Scholar 

  2. Samarskiy, A.A., Zmitrenko, N.V., Kurdyumov, S.P., Mikhailov, A.P.: Teplovyye struktury i fundamental’naya dlina v srede s nelineynoy teploprovodnost’yu i ob”yemnymi istochnikami tepla (Thermal structures and fundamental length in a medium with nonlinear thermal conductivity and volumc heat sources). Doklady akademii nauk SSSR (Reports of the Academy of Sciences of the USSR). 227(2), 321–324 (1976)

    Google Scholar 

  3. Herega, A., Volkov, V.: Current status of the inner boundaries: short review the last 30 years. Int. J. Compo. Mater. 4(5A), 10–15 (2014)

    Google Scholar 

  4. Herega, A., Sukhanov, V., Vyrovoy, V.: The model of the long-range effect in solids: evolution of structure clusters of interior boundaries, and their statistical descriptors. AIP Conf. Proc. 1909, 020069 (2017)

    Google Scholar 

  5. Solomatov, V., Bobryshev, A., Proshin, A.: Klastery v strukture i tekhnologii kompozitsionnykh stroitel’nykh materialov (Clusters in the structure and technology of composite building materials). Izvestiya vuzov. Stroitel’stvo (Proceedings of the universities. Construction) 4, 56–61 (1983)

    Google Scholar 

  6. Herega, A.N.: Physical aspects of self-organization processes in composites. 2. The structure and interaction of inner boundaries. Nanomechanics Sci. Technol. 4(2), 133–143 (2013)

    Article  MathSciNet  Google Scholar 

  7. Uyomov, A.I.: Sistemy i sistemnyye parametry (Systems and system parameters). In: Problemy formal’nogo analiza sistem (The problems of formal analysis of systems). Vysshaya shkola, Moscow (1968)

    Google Scholar 

  8. Von Bertalanffy, L.: General system theory. A critical review. In: General Systems, VII (1962)

    Google Scholar 

  9. Herega, A., Vyrovoy, V.: Inter’yernyye granitsy kompozitov: polimasshtabnost’ struktury i svoystva silovykh poley (Interior boundaries of composites: the multiscale structure and the properties of force fields). In: Abstracts of the Proceeding of the 4th All-Russian Symposium of the Mechanics of Composite Materials and Structures, Institute of Applied Mechanics RAS, Moscow, 4–6 December 2012

    Google Scholar 

  10. Holland, J.: Complexity: a very short introductions. Oxford University Press, Oxford (2014)

    Google Scholar 

  11. Panin,V.Y., Grinyayev, Y.V., Danilov, V.I.: Strukturnyye urovni plasticheskoy deformatsii i razrusheniya (Structural levels of plastic deformation and fracture). Nauka, Novosibirsk (1990)

    Google Scholar 

  12. Olemskoi, A.I., Sklyar, I.A.: Evolution of the defect structure of a solid during plastic deformation. Sov. Phys. Usp. 35(6), 455–480 (1992). https://doi.org/10.1070/pu1992v035n06abeh002241

    Article  ADS  Google Scholar 

  13. Herega, A., Ostapkevich, M.: Computer simulation mesostructure of cluster systems. AIP Conf. Proc. 1623, 209–212 (2014)

    Article  Google Scholar 

  14. Herega, A., et al.: Percolation model of composites: fraction clusters and internal boundaries. Int. J. Compo. Mater. 2, 142–146 (2012)

    Google Scholar 

  15. Psakh’ye, S.G., Zol’nikov, K.P., Kryzhevich, D.S.: Calculation of diffusion properties of grain boundaries in nanocrystalline copper. Phys. Mesomech. 1, 25–28 (2008)

    Article  Google Scholar 

  16. Morozov, Yu., Simbukhov, I., Dyakonov, D.: Study of microstructure and properties of ultrahigh-strength pipe steel of strength category x120 prepared under laboratory conditions. Metallurgist 56, 510–518 (2012)

    Article  Google Scholar 

  17. Turchenko, V. et al: Structural features, magnetic and resistive properties of nanoparticle perovskites, prepared by sol gel method. In: Proceedings of IV International Conference of Functional Nanomaterials and High-purity Substances. Suzdal, 1–5 October 2012

    Google Scholar 

  18. Salamon, M., Jaime, M.: The physics of manganites: structure and transport. Rev. Mod. Phys. 73, 583–628 (2001)

    Article  ADS  Google Scholar 

  19. Fedotov, A., Mazanik, A., Ulyashin, A.: Electrical activity of grain boundaries in silicon bicrystals and its modification by hydrogen plasma treatment. Sol. Energy Mater. Sol. Cells 72, 589–595 (2002)

    Article  Google Scholar 

  20. Fedotov, A., Mazanik, A., Katz, E., et al.: Electrical activity of tilt and twist grain boundaries in silicon. Solid State Phenom. 67–68, 15–20 (1999)

    Article  Google Scholar 

  21. Reda, Chellali M., Balogh, Z., Schmitz, G.: Nano-analysis of grain boundary and triple junction transport in nanocrystalline Ni/Cu. Ultramicroscopy 132, 164–170 (2013)

    Article  Google Scholar 

  22. Zhu, M.W., Wang, Z.J., Chen, Y.N., et al.: Effect of grain boundary on electrical properties of polycrystalline lanthanum nickel oxide thin films. Appl. Phys. A 112, 1011–1018 (2013)

    Article  ADS  Google Scholar 

  23. Hirose, M., Tsunemi, E., Kobayashi, K., Yamada, H.: Influence of grain boundary on electrical properties of organic crystalline grains investigated by dual-probe atomic force microscopy. Appl. Phys. Lett. 103, 109–112 (2013)

    Article  Google Scholar 

  24. Mileiko, S.: Composites and Nanostructures 1, 6 (2009)

    Google Scholar 

  25. Panin, V., Fomin, V., Titov, V.: Fizicheskiye printsipy mezomekhaniki poverkhnostnykh sloyev i vnutrennikh granits razdela v deformiruyemom tverdom tele (Physical principles of mesomechanics of surface layers and internal interfaces in a deformable solid). Fizicheskaya mezomekhanika (Phys. Mesomech.) 6, 5–14 (2003)

    Google Scholar 

  26. Cherepanov, O., Pribytkov, G.: Chislennoye issledovaniye uprugoplasticheskikh deformatsiy metallokeramiki pri zakalke (Numerical study of elastoplastic strains of cermet during quenching). Fizicheskaya mezomekhanika (Phys. Mesomech.) 3, 33–43 (2000)

    Google Scholar 

  27. Psakh’ye, S.G., Uvarov, T.Y., Zol’nikov, K.P.: O novom mekhanizme generatsii defektov na granitsakh razdela. Molekulyarno dinamicheskoye modelirovaniye (On a new mechanism for the generation of defects at interfaces. Molecular dynamic modeling). Fizicheskaya mezomekhanika (Phys. Mesomech.) 3, 21–23 (2000)

    Google Scholar 

  28. Psakh’ye, S.G., Zol’nikov, K.P., Dmitriev, A.I., Smolin, AYu., Shil’ko, Y.V.: Dynamic vortex defects in deformed material. Phys. Mesomech. 17, 15–22 (2004)

    Article  Google Scholar 

  29. Makarov, P.V.: Podkhod fizicheskoy mezomekhaniki k modelirovaniyu protsessov deformatsii i razrusheniya (The approach of physical mesomechanics to the modeling of deformation and fracture processes). Fizicheskaya mezomekhanika (Phys. Mesomech.) 1, 61–81 (1998)

    Google Scholar 

  30. Panin, V.Y., Moiseyenko, D.D., Yelsukova, T.F.: Mnogourovnevaya model’ deformiruyemogo polikristalla. Problema Kholla-Petcha (Multilevel model of a deformable polycrystal. The Hall-Petch problem). Fizicheskaya mezomekhanika (Phys. Mesomech.) 16, 15–28 (2013)

    Google Scholar 

  31. Psakh’ye, S.G., Astafurov, S.V., Shil’ko, E.V.: Effect of elastic characteristics of the surface layer on the deformation properties of materials with an interface-controllable structure. Tech. Phys. 52, 1523–1526 (2007)

    Article  Google Scholar 

  32. Yanovsky, Yu., Obraztsov, I.: Some aspects of computer modeling of advanced polymer composite materials structure and micromechanical properties. Phys. Mesomech. 1, 129–135 (1998)

    Google Scholar 

  33. Kozlov, G., Yanovskii, Yu., Zaikov, G.: Structure and Properties of Particulate-Filled Polymer Composites. Nova Science Publishers, New York (2010)

    Google Scholar 

  34. Kozlov, G.V.: Structure and properties of particulate-filled polymer nanocomposites. Phys. Usp. 58, 33–60 (2015). https://doi.org/10.3367/ufne.0185.201501c.0035

    Article  ADS  Google Scholar 

  35. Lifshitz, I.M., Kosevich, A.M.: The dynamics of a crystal lattice with defects. Kept. Progr. Phys. 29(1), 217–254 (1966)

    Article  ADS  Google Scholar 

  36. Bozhokin, S.V., Parshin, D.A.: Fraktaly i mul’tifraktaly (Fractals and Multifractals). R&H Dynamics, Moscow-Izhevsk (2001)

    Google Scholar 

  37. Mandelbrot, B.: The Fractal Geometry of Nature. W. H. Freeman and Co., San Francisco (1982)

    MATH  Google Scholar 

  38. Herega, A., Drik, N.: Ugol’nikov A.: Hybrid ramified Sierpinski carpet: percolation transition, critical exponents, and force field. Physics-Uspekhi 55(5), 519–521 (2012). https://doi.org/10.3367/UFNe.0182.201205f.0555

    Article  ADS  Google Scholar 

  39. Mandelshtam, L.I.: Lektsii po teorii kolebaniy (Lectures on the Theory of Oscillations). Nauka Press, Moscow (1972)

    Google Scholar 

  40. Broek, D.: Elementary Engineering Fracture Mechanics. Nijhoff, Hague (1982)

    Book  Google Scholar 

  41. Andronov, A.A., Vitt, A.A., Khaykin, S.E.: Teoriya kolebaniy (Theory of oscillations). Nauka, Moscow (1981)

    Google Scholar 

  42. Bekker, M., Herega, A., Lozovskiy, T.: Strange attractors and chaotic behavior of a mathematical model for a centrifugal filter with feedback. Adv. Dyn. Syst. Appl. 4, 179–194 (2009)

    MathSciNet  Google Scholar 

  43. Feigenbaum, M.J.: Universal behavior in nonlinear systems. Los Alamos Sci. 1, 4–27 (1980)

    MathSciNet  Google Scholar 

  44. Bergé, P., Pomeau, Y., Vidal, C.: L’ordre dans le chaos. Hermann, Paris (1997)

    MATH  Google Scholar 

  45. Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Springer, Berlin, Heidelberg (1992)

    MATH  Google Scholar 

  46. Sokolov, I.M.: Dimensions and other critical indictors in the percolation theory. Sov. Phys. Usp. 29, 924–945 (1986). https://doi.org/10.1070/PU1986v029n10ABEH003526

    Article  ADS  Google Scholar 

  47. Aslanov, A.M., Bekker, M.B., Vyrovoj, V.N., Herega, A.N.: Imitation model of synergetic processes in dynamic disperse systems: Ξ Criterion. Tech. Phys. 55, 147–150 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Herega .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s), under exclusive licence to Springer International Publishing, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Herega, A. (2018). The Interaction of Mesoscopic Interior Boundaries of the Material. In: The Selected Models of the Mesostructure of Composites. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-89704-2_4

Download citation

Publish with us

Policies and ethics