Advertisement

Archean TTG Magmatism in the Aravalli Craton, NW India: Petrogenetic and Geodynamic Constraints

  • Iftikhar AhmadEmail author
  • M. E. A. Mondal
  • M. Satyanarayanan
Chapter
Part of the Society of Earth Scientists Series book series (SESS)

Abstract

The Archean Banded Gneissic Complex (BGC) of the Aravalli Craton (NW India) is volumetrically most important basement complex scattered along the northwestern margin of the Indian craton. It is mainly comprised of grey gneisses, undeformed granitoids and volcano-sedimentary sequence. Amongst various lithocomponents, the grey gneisses represent the oldest component of the BGC. Rock association comprising tonalite, trondhjemite and granodiorite (TTG) form a major component of the grey gneisses. Geochemically, the TTG are essentially sodic in nature (avg. K2O/Na2O  =  0.31) and characterized by high Al2O3 (avg. 15.5 wt%), Na2O (avg. 5.3 wt%) and Sr (avg. 413 ppm), and low Y (avg. 10 ppm) contents. They are characterized by enrichment of large ion lithophile elements (LILE) and light rare earth element (LREE) contents. On chondrite- and primitive mantle normalized trace element diagrams, the TTG exhibit: (i) highly fractionated rare earth element (REE) patterns; and (ii) negative anomalies of Nb and Ti. These geochemical characteristics of the TTG suggest that they were not produced from partial melting of mid-oceanic ridge basalts/normal oceanic crust. Instead we propose that the TTG rocks of the Aravalli Craton were formed by partial melting of an enriched source (oceanic plateau) in a subduction setting; with melting taking place at variable depths.

Keywords

TTG Aravalli Craton Indian shield Geochemistry Geodynamics Crustal evolution 

Notes

Acknowledgements

Authors wish to thank the Chairperson, Department of Geology, A.M.U., Aligarh, the Director, CSIR-National Geophysical Research Institute, Hyderabad and the Director General, Geological Survey of India (GSI), Ministry of Mines, Government of India for extending facilities to take up this work. IA and MEAM thank Mr. Syed Ali Imam Mujtaba (Superintending Geologist), Dr. Vikas Bhardwaj (Senior Chemist) and Mr. Mohd. Sadiq (Senior Geologist) of the GSI, Faridabad for their help and support in the preparation of samples for analysis. IA is thankful to the University Grants Commission, India for the award of Senior Research Fellowship. Editorial board and three reviewers (Prof. Somnath Dasgupta, Prof. N. V. Chalapathi Rao and Dr. Milan Kohut) are thanked for their critical suggestions that helped improve the manuscript substantially.

References

  1. Abbott, D., & Mooney, W. (1995). The structural and geochemical evolution of the continental crust: Support for the oceanic plateau model of continental growth. Reviews of Geophysics, 33, 231.  https://doi.org/10.1029/95RG00551.CrossRefGoogle Scholar
  2. Ahmad, I., & Mondal, M. E. A. (2016). Do the BGC-I and BGC-II domains of the Aravalli Craton, northwestern India represent accreted terranes? Earth Science India, 9, 167–175.CrossRefGoogle Scholar
  3. Ahmad, I., Mondal, M. E. A., Bhutani, R., & Satyanarayanan, M. (2017). Geochemical evolution of the Mangalwar Complex, Aravalli Craton, NW India: Insights from elemental and Nd-isotope geochemistry of the basement gneisses. Geoscience Frontiers.  https://doi.org/10.1016/j.gsf.2017.07.003.CrossRefGoogle Scholar
  4. Ahmad, I., Mondal, M. E. A., & Satyanarayanan, M. (2016). Geochemistry of Archean metasedimentary rocks of the Aravalli Craton, NW India: Implications for provenance, paleoweathering and supercontinent reconstruction. Journal of Asian Earth Sciences, 126, 58–73.  https://doi.org/10.1016/j.jseaes.2016.05.019.CrossRefGoogle Scholar
  5. Ahmad, T., & Tarney, J. (1994). Geochemistry and petrogenesis of late Archaean Aravalli volcanics, basement enclaves and granitoids, Rajasthan. Precambrian Research, 65, 1–23.  https://doi.org/10.1016/0301-9268(94)90097-3.CrossRefGoogle Scholar
  6. Arth, J. G. (1979). Some trace elements in trondhjemites—Their implications to magma genesis and paleotectonic setting. In F. Barker (Ed.), Trondhjemites, Dacites, and Related Rocks, Developments in Petrology (pp. 123–132). Amsterdam: Elsevier.CrossRefGoogle Scholar
  7. Arth, J. G., & Hanson, G. N. (1975). Geochemistry and origin of the early Precambrian crust of northeastern Minnesota. Geochimica et Cosmochimica Acta, 39, 325–362.  https://doi.org/10.1016/0016-7037(75)90200-8.CrossRefGoogle Scholar
  8. Barker, F. (1979). Trondhjemite: Definition, environment and hypotheses of origin. In F. Barker (Ed.), Trondhjemites, Dacites, and Related Rocks, Developments in Petrology (pp. 1–12). Amsterdam: Elsevier.Google Scholar
  9. Barker, F., & Arth, J. G. (1976). Generation of trondhjemitic-tonalitic liquids and Archean bimodal trondhjemite-basalt suites. Geology, 4, 596–600. https://doi.org/10.1130/0091-7613(1976)4<596:GOTLAA>2.0.CO;2.CrossRefGoogle Scholar
  10. Bhowmik, S. K., & Dasgupta, S. (2012). Tectonothermal evolution of the Banded Gneissic Complex in central Rajasthan, NW India: Present status and correlation. Journal of Asian Earth Sciences, 49, 339–348.  https://doi.org/10.1016/j.jseaes.2011.07.025.CrossRefGoogle Scholar
  11. Bourdon, E., Eissen, J. P., Monzier, M., Robin, C., Martin, H., Cotten, J., et al. (2002). Adakite-like lavas from Antisana volcano (Ecuador): Evidence for slab melt metasomatism beneath Andean Northern Volcanic Zone. Journal of Petrology, 43, 199–217.  https://doi.org/10.1093/petrology/43.2.199.CrossRefGoogle Scholar
  12. Bourdon, E., Samaniego, P., Monzier, M., Robin, C., Eissen, J. P., & Martin, H. (2004). Dubious case for slab melting in the Northern Volcanic Zone of the Andes: Comment and reply: COMMENT. Geology, 32, e46–e47.  https://doi.org/10.1130/0091-7613-32.1.e46.CrossRefGoogle Scholar
  13. Brown, G. C. (1985). Processes and problems in the continental lithosphere: Geological history and physical implications. Memoirs of Geological Society of London, 10, 326–346.  https://doi.org/10.1144/GSL.MEM.1985.010.01.27.CrossRefGoogle Scholar
  14. Clemens, J. D., Yearron, L. M., & Stevens, G. (2006). Barberton (South Africa) TTG magmas: Geochemical and experimental constraints on source-rock petrology, pressure of formation and tectonic setting. Precambrian Research, 151, 53–78.  https://doi.org/10.1016/j.precamres.2006.08.001.CrossRefGoogle Scholar
  15. Cloos, M. (1993). Lithospheric buoyancy and collisional orogenesis: Subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts. Geological Society of America Bulletin, 105, 715–737. https://doi.org/10.1130/0016-7606(1993)105<0715:LBACOS>2.3.CO;2.CrossRefGoogle Scholar
  16. Condie, K. C. (Ed.). (1981). Archean greenstone belts, developments in Precambrian geology. Amsterdam: Elsevier.Google Scholar
  17. Condie, K. C. (1986). Origin and early growth rate of continents. Precambrian Research, 32, 261–278.  https://doi.org/10.1016/0301-9268(86)90032-X.CrossRefGoogle Scholar
  18. Condie, K. C. (1993). Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chemical Geology, 104, 1–37.  https://doi.org/10.1016/0009-2541(93)90140-E.CrossRefGoogle Scholar
  19. Condie, K. C. (2005). TTGs and adakites: Are they both slab melts? Lithos, 80, 33–44.  https://doi.org/10.1016/j.lithos.2003.11.001.CrossRefGoogle Scholar
  20. Corrigan, J., Mann, P., & Ingle, J. C., Jr. (1990). Forearc response to subduction of the Cocos Ridge, Panama-Costa Rica. Geological Society of America Bulletin, 102, 628–652. https://doi.org/10.1130/0016-7606(1990)102<0628:FRTSOT>2.3.CO;2.CrossRefGoogle Scholar
  21. Davy, B., Hoernle, K., & Werner, R. (2008). Hikurangi Plateau: Crustal structure, rifted formation, and Gondwana subduction history. Geochemistry, Geophysics, Geosystems, 9.  https://doi.org/10.1029/2007GC001855.
  22. de Almeida, J., Dall’Agnol, R., de Oliveira, M. A., Macambira, M. J. B., Pimentel, M. M., Rämö, O. T., et al. (2011). Zircon geochronology, geochemistry and origin of the TTG suites of the Rio Maria granite-greenstone terrane: Implications for the growth of the Archean crust of the Carajás province, Brazil. Precambrian Research, 187, 201–221.  https://doi.org/10.1016/j.precamres.2011.03.004.CrossRefGoogle Scholar
  23. Defant, M. J., & Kepezhinskas, P. (2001). Evidence suggests slab melting in arc magmas. Eos Transactions American Geophysical Union, 82, 65–69.  https://doi.org/10.1029/01EO00038.CrossRefGoogle Scholar
  24. Dharma Rao, C. V., Santosh, M., Purohit, R., Wang, J., Jiang, X., & Kusky, T. (2011). LA-ICP-MS U–Pb zircon age constraints on the Paleoproterozoic and Neoarchean history of the Sandmata Complex in Rajasthan within the NW Indian Plate. Journal of Asian Earth Sciences, 42(3), 286–305.  https://doi.org/10.1016/j.jseaes.2011.01.018.CrossRefGoogle Scholar
  25. Dhuime, B., Wuestefeld, A., & Hawkesworth, C. J. (2015). Emergence of modern continental crust about 3 billion years ago. Nature Geoscience, 8, 552–555.  https://doi.org/10.1038/ngeo2466.CrossRefGoogle Scholar
  26. Drummond, M. S., & Defant, M. J. (1990). A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons. Journal of Geophysical Research, 95, 21503–21521.  https://doi.org/10.1029/JB095iB13p21503.CrossRefGoogle Scholar
  27. Foley, S., Tiepolo, M., & Vannucci, R. (2002). Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 417, 837–840.  https://doi.org/10.1038/nature00799.CrossRefGoogle Scholar
  28. Frost, B. R., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J., & Frost, C. D. (2001). A geochemical classification for granitic rocks. Journal of Petrology, 42, 2033–2048.  https://doi.org/10.1093/petrology/42.11.2033.CrossRefGoogle Scholar
  29. Glikson, A. Y. (1979). Early Precambrian tonalite-trondhjemite sialic nuclei. Earth-Science Reviews, 15, 1–73.  https://doi.org/10.1016/0012-8252(79)90043-6.CrossRefGoogle Scholar
  30. Gopalan, K., Macdougall, J. D., Roy, A. B., & Murali, A. V. (1990). Sm–Nd evidence for 3.3 Ga old rocks in Rajasthan, northwestern India. Precambrian Research, 48, 287–297.  https://doi.org/10.1016/0301-9268(90)90013-G.CrossRefGoogle Scholar
  31. Guitreau, M., Blichert-Toft, J., Martin, H., Mojzsis, S. J., & Albarède, F. (2012). Hafnium isotope evidence from Archean granitic rocks for deep-mantle origin of continental crust. Earth and Planetary Science Letters, 337–338, 211–223.  https://doi.org/10.1016/j.epsl.2012.05.029.CrossRefGoogle Scholar
  32. Gupta, B. C. (1934). The geology of central Mewar. Memoir of Geological Society of India, 65, 107–168.Google Scholar
  33. Gutscher, M. A., Malavieille, J., Lallemand, S., & Collot, J. Y. (1999). Tectonic segmentation of the North Andean margin: Impact of the Carnegie Ridge collision. Earth and Planetary Science Letters, 168, 255–270.  https://doi.org/10.1016/S0012-821X(99)00060-6.CrossRefGoogle Scholar
  34. Halla, J., van Hunen, J., Heilimo, E., & Hölttä, P. (2009). Geochemical and numerical constraints on Neoarchean plate tectonics. Precambrian Research, 174, 155–162.  https://doi.org/10.1016/j.precamres.2009.07.008.CrossRefGoogle Scholar
  35. Hampel, A., Kukowski, N., Bialas, J., Huebscher, C., & Heinbockel, R. (2004). Ridge subduction at an erosive margin: The collision zone of the Nazca Ridge in southern Peru. Journal of Geophysical Research, 109.  https://doi.org/10.1029/2003JB002593.
  36. Heilimo, E., Halla, J., & Hölttä, P. (2010). Discrimination and origin of the sanukitoid series: Geochemical constraints from the Neoarchean western Karelian Province (Finland). Lithos, 115, 27–39.  https://doi.org/10.1016/j.lithos.2009.11.001.CrossRefGoogle Scholar
  37. Heron, A. M. (1953). The geology of central Rajputana. Memoirs of the Geological survey of India, 79, 1–389.Google Scholar
  38. Hidalgo, S., Monzier, M., Martin, H., Chazot, G., Eissen, J. P., & Cotten, J. (2007). Adakitic magmas in the Ecuadorian volcanic front: Petrogenesis of the Iliniza Volcanic Complex (Ecuador). Journal of Volcanology and Geothermal Research, 159, 366–392.  https://doi.org/10.1016/j.jvolgeores.2006.07.007.CrossRefGoogle Scholar
  39. Huang, X. L., Niu, Y., Xu, Y. G., Yang, Q. J., & Zhong, J. W. (2010). Geochemistry of TTG and TTG-like gneisses from Lushan-Taihua complex in the southern North China Craton: Implications for late Archean crustal accretion. Precambrian Research, 182, 43–56.  https://doi.org/10.1016/j.precamres.2010.06.020.CrossRefGoogle Scholar
  40. Jahn, B. M., Glikson, A. Y., Peucat, J. J., & Hickman, A. H. (1981). REE geochemistry and isotopic data of Archean silicic volcanics and granitoids from the Pilbara Block, Western Australia: Implications for the early crustal evolution. Geochimica et Cosmochimica Acta, 45, 1633–1652.  https://doi.org/10.1016/S0016-7037(81)80002-6.CrossRefGoogle Scholar
  41. Jayananda, M., Chardon, D., Peucat, J. J., Tushipokla, & Fanning, C. M. (2015). Paleo- to Mesoarchean TTG accretion and continental growth in the western Dharwar Craton, southern India: Constraints from SHRIMP U–Pb zircon geochronology, whole-rock geochemistry and Nd–Sr isotopes. Precambrian Research, 268, 295–322.  https://doi.org/10.1016/j.precamres.2015.07.015.CrossRefGoogle Scholar
  42. Johnson, K. T. M. (1994). Experimental cpx/ and garnet/melt partitioning of REE and other trace elements at high pressures: Petrogenetic implications. Mineralogical Magazine, 58A, 454–455.  https://doi.org/10.1180/minmag.1994.58A.1.236.CrossRefGoogle Scholar
  43. Kelemen, P. B. (1995). Genesis of high Mg# andesites and the continental crust. Contributions to Mineralogy and Petrology, 120, 1–19.  https://doi.org/10.1007/BF00311004.CrossRefGoogle Scholar
  44. Kerr, A. C. (2003). Oceanic Plateaus. In R. L. Rudnick (Ed.), The crust, treatise on geochemistry (pp. 537–565). Oxford: Elsevier-Pergamon.CrossRefGoogle Scholar
  45. Kerr, A. C., & Mahoney, J. J. (2007). Oceanic plateaus: Problematic plumes, potential paradigms. Chemical Geology, 241, 332–353.  https://doi.org/10.1016/j.chemgeo.2007.01.019.CrossRefGoogle Scholar
  46. Lameyre, J., & Bowden, P. (1982). Plutonic rock types series: Discrimination of various granitoid series and related rocks. Journal of Volcanology and Geothermal Research, 14(1–2), 169–186.  https://doi.org/10.1016/0377-0273(82)90047-6.CrossRefGoogle Scholar
  47. Lemarchand, F., Villemant, B., & Calas, G. (1987). Trace element distribution coefficients in alkaline series. Geochimica et Cosmochimica Acta, 51, 1071–1081.  https://doi.org/10.1016/0016-7037(87)90201-8.CrossRefGoogle Scholar
  48. Manya, S. (2016). Petrogenesis and emplacement of the TTG and K-rich granites at the Buzwagi gold mine, northern Tanzania: Implications for the timing of gold mineralization. Lithos, 256–257, 26–40.  https://doi.org/10.1016/j.lithos.2016.03.025.CrossRefGoogle Scholar
  49. Martin, H. (1986). Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology, 14, 753–756. https://doi.org/10.1130/0091-7613(1986)14<753:EOSAGG>2.0.CO;2.CrossRefGoogle Scholar
  50. Martin, H. (1987). Petrogenesis of Archaean trondhjemites, tonalites, and granodiorites from eastern Finland: Major and trace element geochemistry. Journal of Petrology, 28, 921–953.  https://doi.org/10.1093/petrology/28.5.921.CrossRefGoogle Scholar
  51. Martin, H. (1994). The Archean grey gneisses and the genesis of continental crust. In K. C. Condie (Ed.), Archean crustal evolution, developments in Precambrian geology (pp. 205–259). Amsterdam: Elsevier.CrossRefGoogle Scholar
  52. Martin, H. (1999). Adakitic magmas: Modern analogues of Archaean granitoids. Lithos, 46, 411–429.  https://doi.org/10.1016/S0024-4937(98)00076-0.CrossRefGoogle Scholar
  53. Martin, H., & Moyen, J. F. (2002). Secular changes in tonalite-trondhjemite-granodiorite composition as markers of the progressive cooling of Earth. Geology, 30, 319–322. https://doi.org/10.1130/0091-7613(2002)030.CrossRefGoogle Scholar
  54. Martin, H., Moyen, J. F., Guitreau, M., Blichert-Toft, J., & Le Pennec, J. L. (2014). Why Archaean TTG cannot be generated by MORB melting in subduction zones. Lithos, 198–199, 1–13. https://doi.org/10.1016/j.lithos.2014.02.017.CrossRefGoogle Scholar
  55. Martin, H., Smithies, R. H., Rapp, R., Moyen, J. F., & Champion, D. (2005). An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79, 1–24.  https://doi.org/10.1016/j.lithos.2004.04.048.CrossRefGoogle Scholar
  56. McDonough, W. F., & Sun, S. S. (1995). The composition of the Earth. Chemical Geology, 120, 223–253.  https://doi.org/10.1016/0009-2541(94)00140-4.CrossRefGoogle Scholar
  57. Mohan, M. R., Singh, S. P., Santosh, M., Siddiqui, M. A., & Balaram, V. (2012). TTG suite from the Bundelkhand Craton, central India: Geochemistry, petrogenesis and implications for Archean crustal evolution. Journal of Asian Earth Sciences, 58, 38–50.  https://doi.org/10.1016/j.jseaes.2012.07.006.CrossRefGoogle Scholar
  58. Mondal, M. E. A., Raza, M., & Ahmad, T. (2008). Geochemistry of the mafic dykes of the Aravalli-Bundelkhand proto-continent: Implications for sub-continental lithosphere evolution of north Indian shield. In R. K. Srivastava, C. Sivaji, & N. V. Chalapathi Rao (Eds.), Indian dykes: Geochemistry, geophysics and geochronology (pp. 527–545). New Delhi, India: Narosa Publishing House Pvt. Ltd.Google Scholar
  59. Moorbath, S. (1975). Evolution of Precambrian crust from strontium isotopic evidence. Nature, 254, 395–398.  https://doi.org/10.1038/254395a0.CrossRefGoogle Scholar
  60. Moyen, J. F. (2011). The composite Archaean grey gneisses: Petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth. Lithos, 123, 21–36.  https://doi.org/10.1016/j.lithos.2010.09.015.CrossRefGoogle Scholar
  61. Moyen, J. F., Champion, D., & Smithies, R. H. (2010). The geochemistry of Archaean plagioclase-rich granites as a marker of source enrichment and depth of melting. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 100, 35–50.  https://doi.org/10.1017/S1755691009016132.CrossRefGoogle Scholar
  62. Moyen, J. F., & Stevens, G. (2006). Experimental constraints on TTG petrogenesis: Implications for Archean geodynamics. In K. Benn, J. C. Mareschal, & K. C. Condie (Eds.), Archean Geodynamics and Environments, Geophysical Monograph Series (pp. 149–175). Washington, DC: American Geophysical Union.CrossRefGoogle Scholar
  63. O’Connor, J. T. (1965). A classification for quartz-rich igneous rocks based on feldspar ratios. United States Geological Survey Prof. Pap. B, 525, 79–84.Google Scholar
  64. Park, J. O., Hori, T., & Kaneda, Y. (2009). Seismotectonic implications of the Kyushu-Palau ridge subducting beneath the westernmost nankai forearc. Earth Planets Space, 61, 1013–1018.  https://doi.org/10.1186/BF03352951.CrossRefGoogle Scholar
  65. Patino Douce, A. E. (1999). What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geological Society London Special Publications, 168, 55–75.  https://doi.org/10.1144/GSL.SP.1999.168.01.05.CrossRefGoogle Scholar
  66. Pearce, J. A., Harris, N. B. W., & Tindle, A. G. (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956–983.  https://doi.org/10.1093/petrology/25.4.956.CrossRefGoogle Scholar
  67. Pearce, J. A., & Norry, M. J. (1979). Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology, 69, 33–47.  https://doi.org/10.1007/BF00375192.CrossRefGoogle Scholar
  68. Peccerillo, A., & Taylor, S. R. (1976). Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58, 63–81.  https://doi.org/10.1007/BF00384745.CrossRefGoogle Scholar
  69. Rahaman, M. S., & Mondal, M. E. A. (2015). Evolution of continental crust of the Aravalli Craton, NW India, during the Neoarchaean–Palaeoproterozoic: Evidence from geochemistry of granitoids. International Geology Review, 57, 1510–1525.  https://doi.org/10.1080/00206814.2014.950607.CrossRefGoogle Scholar
  70. Rahaman, M. S., Mondal, M. E. A., Ahmad, I., Bhutani, R., & Choudhary, A. K. (2017). Geochemical and Nd isotopic studies of the Neoarchaean–Palaeoproterozoic granitoids of the Aravalli Craton, NW India: Evidence for heterogeneous crustal evolution processes. Geological evolution of precambrian Indian Shield., Society of Earth Scientists Series Switzerland: Springer International Publishing.Google Scholar
  71. Rapp, R. P., Shimizu, N., & Norman, M. D. (2003). Growth of early continental crust by partial melting of eclogite. Nature, 425, 605–609.  https://doi.org/10.1038/nature02031.CrossRefGoogle Scholar
  72. Rapp, R., Shimizu, N., Norman, M., & Applegate, G. (1999). Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa. Chemical Geology, 160, 335–356.  https://doi.org/10.1016/S0009-2541(99)00106-0.CrossRefGoogle Scholar
  73. Rapp, R. P., & Watson, E. B. (1995). Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36, 891–931.  https://doi.org/10.1093/petrology/36.4.891.CrossRefGoogle Scholar
  74. Rapp, R. P., Watson, E. B., & Miller, C. F. (1991). Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Research, 51, 1–25.  https://doi.org/10.1016/0301-9268(91)90092-O.CrossRefGoogle Scholar
  75. Robin, C., Eissen, J. P., Samaniego, P., Martin, H., Hall, M., & Cotten, J. (2009). Evolution of the late pleistocene mojanda-fuya fuya volcanic complex (Ecuador), by progressive adakitic involvement in mantle magma sources. Bulletin of volcanology, 71, 233–258.  https://doi.org/10.1007/s00445-008-0219-9.CrossRefGoogle Scholar
  76. Ronov, A. B. (1972). Evolution of rock composition and geochemical processes in the sedimentary shell of the earth. Sedimentology, 19, 157–172.  https://doi.org/10.1111/j.1365-3091.1972.tb00019.x.CrossRefGoogle Scholar
  77. Roy, A. B., & Jakhar, S. R. (2002). Geology of Rajasthan (northwest India): Precambrian to recent. Jodhpur: Scientific Publishers.Google Scholar
  78. Roy, A. B., & Kroner, A. (1996). Single zircon evaporation ages constraining the growth of the Archaean Aravalli Craton, northwestern Indian shield. Geological Magazine, 133, 333–342.  https://doi.org/10.1017/S0016756800009067.CrossRefGoogle Scholar
  79. Samaniego, P. (2005). Temporal evolution of magmatism in the northern volcanic zone of the Andes: The geology and petrology of cayambe volcanic complex (Ecuador). Journal of Petrology, 46, 2225–2252.  https://doi.org/10.1093/petrology/egi053.CrossRefGoogle Scholar
  80. Samaniego, P., Martin, H., Robin, C., & Monzier, M. (2002). Transition from calc-alkalic to adakitic magmatism at cayambe volcano, Ecuador: Insights into slab melts and mantle wedge interactions. Geology, 30, 967. https://doi.org/10.1130/0091-7613(2002)030<0967:TFCATA>2.0.CO;2.CrossRefGoogle Scholar
  81. Satyanarayanan, M., Balaram, V., Sawant, S. S., Subramanyam, K. S. V., & Krishna, G. V. (2014). High precision multielement analysis on geological samples by HR-ICP-MS. In S. K. Aggarwal, P. G. Jaison, & A. Sarkar (Eds.), 28th ISMAS Symposium Cum Workshop on Mass Spectrometry (pp. 181–184). Mumbai: Indian Society for Mass Spectrometry.Google Scholar
  82. Schiano, P., Monzier, M., Eissen, J. P., Martin, H., & Koga, K. T. (2010). Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes. Contributions to Mineralogy and Petrology, 160, 297–312.  https://doi.org/10.1007/s00410-009-0478-2.CrossRefGoogle Scholar
  83. Sen, C., & Dunn, T. (1994). Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: Implications for the origin of adakites. Contributions to Mineralogy and Petrology, 117, 394–409.  https://doi.org/10.1007/BF00307273.CrossRefGoogle Scholar
  84. Streckeisen, A. (1976). To each plutonic rock its proper name. Earth-Science Reviews, 12(1), 1–33.  https://doi.org/10.1016/0012-8252(76)90052-0.CrossRefGoogle Scholar
  85. Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society London Special Publications, 42, 313–345.  https://doi.org/10.1144/GSL.SP.1989.042.01.19.CrossRefGoogle Scholar
  86. Taylor, S. R., & McLennan, S. M. (1986). The chemical composition of the Archaean crust. Geological Society London Special Publications, 24, 173–178.  https://doi.org/10.1144/GSL.SP.1986.024.01.16.CrossRefGoogle Scholar
  87. Upadhyaya, R., Sharma, B. L., Jr., Sharma, B. L., Sr., & Roy, A. B. (1992). Remnants of greenstone sequence from the Archaean rocks of Rajasthan. Current Science, 63, 87–92.Google Scholar
  88. von Huene, R., Corvalán, J., Flueh, E. R., Hinz, K., Korstgard, J., Ranero, C. R., et al. (1997). Tectonic control of the subducting Juan Fernández ridge on the Andean margin near valparaiso, Chile. Tectonics, 16, 474–488.  https://doi.org/10.1029/96TC03703.CrossRefGoogle Scholar
  89. Wiedenbeck, M., & Goswami, J. N. (1994). High precision 207Pb/206Pb zircon geochronology using a small ion microprobe. Geochimica et Cosmochimica Acta, 58, 2135–2141.  https://doi.org/10.1016/0016-7037(94)90291-7.CrossRefGoogle Scholar
  90. Wiedenbeck, M., Goswami, J. N., & Roy, A. B. (1996). Stabilization of the Aravalli Craton of northwestern India at 2.5 Ga: An ion microprobe zircon study. Chemical Geology, 129, 325–340.  https://doi.org/10.1016/0009-2541(95)00182-4.CrossRefGoogle Scholar
  91. Winther, K. T. (1996). An experimentally based model for the origin of tonalitic and trondhjemitic melts. Chemical Geology, 127, 43–59.  https://doi.org/10.1016/0009-2541(95)00087-9.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Iftikhar Ahmad
    • 1
    Email author
  • M. E. A. Mondal
    • 1
  • M. Satyanarayanan
    • 2
  1. 1.Department of GeologyAligarh Muslim UniversityAligarhIndia
  2. 2.CSIR-National Geophysical Research InstituteHyderabadIndia

Personalised recommendations