Advertisement

Deformation and Tectonic History of Punagarh Basin in the Trans-Aravalli Terrane of North-Western India

  • Anamika BhardwajEmail author
  • Tapas Kumar Biswal
Chapter
Part of the Society of Earth Scientists Series book series (SESS)

Abstract

Trans-Aravalli terrane in the NW India is represented by Neoproterozoic volcano-sedimentary succession of Punagarh Basin that unconformably overlies deformed and metamorphosed basement rocks of Sojat Formation. The basement rocks were deformed into upright inclined folds with parallel to chevron geometry. The axial plane cleavages were developed showing variation in trend from NE-SW to ENE-WSW and this variation was due to late generation open folds. The folded rocks were superimposed by normal as well as strike faults which vary from planar to listric geometry. Due to block rotation roll over antiforms with complimentary synforms were developed. Erinpura granites and Malani Igneous Suite intruded Sojat Formation. Punagrh Group is subdivided into three Formations namely Bambholai Formation, Khamal Formation and Sowaniya Formation represented by quartzite, shale and bimodal volcanics. The lithological sequence suggests a deposition in a continental rift environment where volcanics were associated with shelf water facies. Normal as well as strike slip faults were developed in the sediments and are syn-kinematic to deposition. While the normal faults strike NE-SW direction the strike slip faults are in WNW-ESE direction. Small scale roll overs, drag folds and flanking structures are associated with normal faults while en-echelon arrays of quartz veins are associated with the strike slip faults. The paleostress tensor analysis of small scale faults suggests a NW-SE extension created normal faults while the strike slip faults were produced from a NNW-SSE compression.

Keywords

Punagarh basin Sojat formation Normal and strike slip faults Extensional setting 

Notes

Acknowledgements

The authors are thankful to Department of Earth Sciences, Indian Institute of Technology Bombay for providing financial support and facilities for this study.

References

  1. Angelier, J., & Mechler, P. (1977). Sur une méthode graphique de recherche des contraintes principales également utilisable en tectonique et en séismologie: la méthode des dièdres droits. Bulletin de la Société géologique de France, 7(XIX), 1309–1318.CrossRefGoogle Scholar
  2. Angelier, J. (1991). Inversion directe de recherche 4-D: comparaison physique et mathématique de deux méthodes de détermination des tenseurs des paléocontraintes en tectonique de failles. Compte Rendus de l’Académie des Sciences de Paris, 312(II), 1213–1218.Google Scholar
  3. Angelier, J. (1994). Fault slip analysis and paleostress reconstruction. In P. L. Hancock (Ed.), Continental deformation (pp. 101–120). Oxford: Pergamon.Google Scholar
  4. Beach, A. (1975). The geometry of en-echelon vein arrays. Tectonophysics, 28(4), 245–263.CrossRefGoogle Scholar
  5. Bhushan, S. K. (1995). Late proterozoic continental growth: Implication from geochemistry of acid magmatic events of West Indian craton. Journal of the Geological Society of India, 34, 339–354.Google Scholar
  6. Bhushan, S. K. (2000). Malani rhyolites—a review. Gondwana Research, 3, 65–77.CrossRefGoogle Scholar
  7. Biswal, T. K., Gyani, K. C., Parthasarathy, R., & Pant, D. R. (1998). Implications of the geochemistry of the Pelitic Granulites of the Delhi Supergroup, Aravalli Mountain Belt, Northwestern India. Precambrian Research, 87, 75–85.CrossRefGoogle Scholar
  8. Bose, U. (1989). Correlation problems of the proterozoic stratigraphy of Rajasthan. Indian Minerals, 43(3–4), 183–193.Google Scholar
  9. Bott, M. H. P. (1959). The mechanics of oblique slip faulting. Geological Magazine, 96(02), 109–117.CrossRefGoogle Scholar
  10. Chore, S. A., & Mohanty, M. (1998). Stratigraphic and tectonic setting of the Trans-Aravalli Neoproterozoic volcanosedimentary sequences in Rajasthan. Journal of the Geological Society of India, 51, 57–68.Google Scholar
  11. Choudhary, A. K., Gopalan, K., & Sastry, C. A. (1984). Present status of the geochronology of the Precambrian rocks of Rajasthan. Tectonophysics, 105, 131–140.CrossRefGoogle Scholar
  12. Crawford, A. R. (1975). Rb-Sr age determination for the Mount Abu Granite and related rocks of Gujarat. Journal of Geological Society of India, 16, 20–28.Google Scholar
  13. Deb, M., Thorpe, R. I., Cumming, G. L., & Wagner, P. A. (1989). Age, source and stratigraphic Implication of Pb Isotope data for conformable, sediment-hosted, base metal deposits in the Proterozoic Aravalli-Delhi orogenic belt, Northwestern India. Precambrian Research, 43, 1–22.CrossRefGoogle Scholar
  14. Deb, M., & Thorpe, R. I. (2001). Geochronological constraints in the Precambrian geology of Northwestern India and their metallogenic implication. In M. Deb & W. D. Goodfellow (Eds.), Sediment-hosted lead–zinc sulfide deposit in the Northwestern Indian shield, Proceedings of an International Workshop, Delhi-Udaipur, India, pp. 137–152.Google Scholar
  15. Delvaux, D. (1993). The TENSOR program for paleostress reconstruction: Examples from the east African and the Baikal rift zones. Terra Nova, 5(1), 216.Google Scholar
  16. Delvaux, D., Moeys, R., Stapel, G., Petit, C., Levi, K., Miroshnichenko, A., et al. (1997). Paleostress reconstructions and geodynamics of the Baikal region, central Asia, Part 2. Cenozoic rifting. Tectonophysics, 282(1–4), 1–38.CrossRefGoogle Scholar
  17. Dharma Rao, C. V., Santosh, M., Purohit, R., Wang, J., Jiang, X., & Kusky, T. (2011). LA-ICPMS U–Pb zircon age constraints on the Paleoproterozoic and Neoarchean history of the Sandmata Complex in Rajasthan within the NW Indian Plate. Journal of Asian Earth Sciences, 42, 286–305.CrossRefGoogle Scholar
  18. Dharma Rao, C. V., Santosh, M., Kim, S. W., & Li, S. (2013). Arc magmatism in the Delhi Fold Belt: SHRIMP U–Pb zircon ages of granitoids and implications for Neoproterozoic convergent margin tectonics in NW India. Journal of Asian Earth Sciences, 78, 83–99.CrossRefGoogle Scholar
  19. Dunne, W. M., & Hancock, P. L. (1994). Palaeostress analysis of small-scale brittle structures. Continental Deformation, 5, 101–120.Google Scholar
  20. Gopalan, K., Macdougall, J. D., Roy, A. B., & Murali, A. V. (1990). Sm-Nd evidence for 3.3 Ga old rocks in Rajasthan, northwestern India. Precambrian Research, 48, 287–297.CrossRefGoogle Scholar
  21. Gupta, S. N., Arora, Y. K., Mathur, R. K., Iqballuddin, P. B., Sahai, T. N., & Sharma, S. B. (1980). Lithostratigraphic map of the Aravalli region. Geological Survey of India, Hyderabad.Google Scholar
  22. Gupta, S. N., Arora, Y. K., Mathur, R. K., Iqballuddin, P. B., Sahai, T. N., & Sharma, S. B. (1997). The Precambrian geology of the Aravalli region, southern Rajasthan and north-eastern Gujarat, India (with geological map, Scale 1:2,50,000). Memoirs of the Geological Survey of India, 123, 262.Google Scholar
  23. Hancock, P. L. (1985). Brittle microtectonics: Principles and practice. Journal of Structural Geology, 7(3), 437–457.CrossRefGoogle Scholar
  24. Just, J., Schulz, B., de Wall, H., Jourdan, F., & Pandit, M. K. (2011). Monazite CHIME/EPMA dating of Erinpura granitoid deformation: Implications for Neoproterozoic tectono-thermal evolution of NW India. Gondwana Research, 19, 402–412.CrossRefGoogle Scholar
  25. Kaur, P., Zeh, A., Chaudhri, N., Gerdes, A., & Okrusch, M. (2011). Archaean to Palaeoproterozoic crustal evolution of the Aravalli orogen, NW India, and its hinterland: The U–Pb and Hf isotope record of detrital zircon. Precambrian Research, 187, 155–164.CrossRefGoogle Scholar
  26. Kaur, P., Zeh, A., Chaudhri, N., Gerdes, A., & Okrusch, M. (2013). Nature of magmatism and sedimentation at a Columbia active margin: Insights from combined U–Pb and Lu–Hf isotope data of detrital zircons from NW India. Gondwana Research, 23, 1040–1052.CrossRefGoogle Scholar
  27. Khalil, S. M., & McClay, K. R. (2002). Extensional fault-related folding, northwestern Red Sea, Egypt. Journal of Structural Geology, 24(4), 743–762.CrossRefGoogle Scholar
  28. Khan, M. S., Raza, M., & Safdar-E-Azam, M. (2004). Bombolai Continental Pillow Lavas (Neoproterozoic) from Trans-Aravalli Region, Pali District, Rajasthan and their Tectonic significance. Geological Society of India, 64(6), 803–812.Google Scholar
  29. Khan, T., & Khan, M. S. (2015). Clastic rock geochemistry of Punagarh basin, trans-Aravalli region, NW Indian shield: Implications for paleoweathering, provenance, and tectonic setting. Arabian Journal of Geosciences, 8(6), 3621–3644.CrossRefGoogle Scholar
  30. Macdougall, J. D., Gopalan, K., Lugmair, G. W., & Roy, A. B. (1983). The banded Gneissic complex of Rajasthan, India: Early crust from depleted mantle at ~3.5 AE? Eos, transactions. American Geophysical Union, 64, 351.Google Scholar
  31. McKenzie, N. R., Hughes, N. C., Myrow, P. M., Banerjee, D. M., Deb, M., & Planavsky, N. J. (2013). New age constraints for the Proterozoic Aravalli-Delhi successions of India and their implications. Precambrian Research, 238, 120–128.CrossRefGoogle Scholar
  32. Meert, J. G., Pandit, M. K., & Kamenov, G. D. (2013). Further geochronological and paleomagnetic constraints on Malani (and pre-Malani) magmatism in NW India. Tectonophysics, 608, 1254–1267.CrossRefGoogle Scholar
  33. Murao, S., Deb, M., Takagi, T., Seki, Y., Pringle, M., & Naito, K. (2000). Geochemical and geochronological constraints for tin polymetallic mineralization in Tosham area, Haryana, India. In M. Deb (Ed.), Crustal evolution and metallogeny in northwestern Indian shield (pp. 43–442). New Delhi: Narosa Publishing House.Google Scholar
  34. Pollard, D. D., Segall, P., & Delaney, P. T. (1982). Formation and interpretation of dilatant echelon cracks. Geological Society of America Bulletin, 93(12), 1291–1303.CrossRefGoogle Scholar
  35. Purohit, R., Papineau, D., Kröner, A., Sharma, K. K., & Roy, A. B. (2012). Carbon isotope geochemistry and geochronological constraints of the Neoproterozoic Sirohi Group from northwest India. Precambrian Research, 220, 80–90.CrossRefGoogle Scholar
  36. Ramsay, J. G., & Huber, M. I. (1983). Strain analysis, the techniques of modern structural geology (Vol. 1)., Strain Analysis London: Academic Press.Google Scholar
  37. Roy, A. B., & Sharma, K. K. (1999). Geology of the region around Sirohi town, western Rajasthan–story of Neoproterozoic evolution of the Trans-Aravalli crust. In B. S. Paliwal (Ed.), Geological evolution of Western Rajasthan (pp. 19–33).Google Scholar
  38. Roy, A. B., & Jakhar, S. R. (2002). Geology of Rajasthan (Northwest India)—Precambrian to recent (p. 421). Jodhpur: Scientific Publishers (India).Google Scholar
  39. Sarkar, G., Burman, T. R., & Corfu, F. (1989). Timing of continental arc-type magmatism in northwest India: Evidence from U to Pb zircon geochronology. Journal of Geology, 97, 607–612.CrossRefGoogle Scholar
  40. Singh, Y. K., De Waele, B., Karmarkar, S., Sarkar, S., & Biswal, T. K. (2010). Tectonic setting of the Balaream–Kui–Surpagla–Kengora granulites of the South Delhi Terrane of the Aravalli Mobile Belt, NW India and its implication on correlation with the East African Orogen in the Gondwana assembly. Precambrian Research, 183, 669–688.CrossRefGoogle Scholar
  41. Sinha-Roy, S., Malhotra, G., & Mohanty, M. (1998). Geology of Rajasthan (p. 278). Bangalore: Geological Society of India.Google Scholar
  42. Sugden, T. J., Deb, M., & Windley, B. F. (1990). The tectonic setting of mineralisation in the proterozoic Aravalli-Delhi orogenic belt, NW India. In S. M. Naqvi (Ed.), Precambrian continental crust and its Economic Resources (pp. 367–390). New York: Elsevier.CrossRefGoogle Scholar
  43. Tobisch, O. T., Collerson, K. D., Bhattacharya, T., & Mukhopadhyay, D. (1994). Structural relationship and Sm–Nd isotope systematics of polymetamorphic granitic gneisses and granitic rocks from central Rajasthan, India-implications for the evolution of the Aravalli craton. Precambrian Research, 65, 319–339.CrossRefGoogle Scholar
  44. Torsvik, T. H., Carter, L. M., Ashwal, L. D., Bhushan, S. K., Pandit, M. K., & Jamtveit, B. (2001). Rodinia refined or obscured: Palaeomagnetism of the Malani igneous suite (NW India). Precambrian Research, 108(3), 319–333.CrossRefGoogle Scholar
  45. Van Lente, B., Ashwal, L. D., Pandit, M. K., Bowring, S. A., & Torsvik, T. H. (2009). Neoproterozoic hydrothermally altered basaltic rocks from Rajasthan, northwest India: Implications for late Precambrian tectonic evolution of the Aravalli Craton. Precambrian Research, 170, 202–222.CrossRefGoogle Scholar
  46. Verma, P. K., & Greiling, R. O. (1995). Tectonic evolution of the Aravalli orogen (NW India): An inverted proterozoic rift basin? Geologische Rundschau, 84, 683–686.CrossRefGoogle Scholar
  47. Volpe, A. M., & Macdougall, J. D. (1990). Geochemistry and isotopic characteristics of mafic (Phulad ophiolite) and related rocks in the Delhi Supergroup, Rajasthan, India: Implications for rifting in the Proterozoic. Precambrian Research, 48, 167–191.CrossRefGoogle Scholar
  48. Wiedenbeck, M., & Goswami, J. N. (1994). High precision 207 Pb/206 Pb zircon geochronology using a small ion microprobe. Geochimica Et Cosmochimica Acta, 58, 2135–2141.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Earth SciencesIndian Institute of Technology BombayPowai, MumbaiIndia

Personalised recommendations