Skip to main content

Stratigraphic Evolution and Architecture of the Terrestrial Succession at the Base of the Neoproterozoic Badami Group, Karnataka, India

  • Chapter
  • First Online:
Geological Evolution of the Precambrian Indian Shield

Part of the book series: Society of Earth Scientists Series ((SESS))

Abstract

The multistoried siliciclastic succession at the base of basal Kerur Formation of the Neoproterozoic Badami Group shows ample variations in sequence building pattern within the ambit of the Precambrian fluvial sedimentation system. Detailed facies, architectural element, paleocurrent as well as stratigraphic architectural analysis invariably revealed a frequently avulsive braided pattern, with flashy discharges, for the paleoriver system; which is consistent with the basic tenet of the Precambrian alluvial sedimentation. Rare eolian features suggest seasonal flow fluctuations, referring to the semiperennial nature of the fluvial system. The studied interval represents a single valley fill, internally constituted by seven vertically juxtaposed channel belts. Each channel belt is fining upward along with the overall grain-size reduction up the succession. While the older channel belts inferred to be braided, channels possibly become more sinuous towards the top of the succession, as inferred from the appearance of bank-attached bars along with the omnipresent longitudidal bars. Flow durability within channel also increases with time, as the lower two belts appear to be ephemeral with highest energy flashy discharges, changing into semiperennial to perennial one upward. Bounded between an unconformity below and a thoroughly wave-featured limestone unit above, the coarse and poorly sorted clastic sedimentary rocks at the base of the basal Kerur Formation are interpreted as a base-level lowstand product, indicating gradual filling of the paleoriver valley under the backdrop of slow rise in base profile. Tectonics-related generation of accommodation space as well as the rejuvenation of slope along and across the basin-margin dictated the sediment distribution and sequence building pattern primarily. The increase in channel sinuosity up-the-succession is governed by the raised rate of base profile rise, which ultimately leads to termination of the terrestrial depositional system by complete marine inundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, J. R. L. (1968). Current ripples (433p). Amsterdam: North-Holland Publishing Co.

    Google Scholar 

  • Allen, J. R. L. (1970). Physical processes of sedimentation (248p). London: Allen and Unwin.

    Google Scholar 

  • Allen, J. R. L. (1982). Sedimentary structures: Their character and physical basis. Developments in Sedimentology, 30, 593.

    Google Scholar 

  • Bartholdy, J., & Billi, P. (2002). Morphodynamics of a pseudomeandering gravel bar reach. Geomorphology, 42(3–4), 293–310.

    Article  Google Scholar 

  • Best, J. L., Ashworth, P. J., Bristow, C. S., & Roden, J. (2003). Three-dimensional sedimentary architecture of a large, Mid-Channel Sand Braid Bar, Jamuna River, Bangladesh. Journal of Sedimentary Research, 73(4), 516–530.

    Article  Google Scholar 

  • Blair, T. C., & McPherson, J. G. (1994). Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages. Journal of Sedimentary Research, Part A, 64, 450–489.

    Google Scholar 

  • Blatt, H., Middleton, G. V., & Murray, R. (1980). Origin of sedimentary rocks (2nd Ed., 782p). Englewood Cliffs, N.J.: Prentice Hall.

    Google Scholar 

  • Blum, M., & Tornqvist, T. (2000). Fluvial responses to climate and sea-level change: A review and forward. Sedimentology, 47, 2–48.

    Article  Google Scholar 

  • Bose, P. K., Eriksson, P. G., Sarkar, S., Wright, D., Samanta, P., Mukhopadhyay, S., et al. (2012). Sedimentation patterns during the Precambrian: A unique record? Marine and Petroleum Geology, 33, 34–68.

    Article  Google Scholar 

  • Bose, P. K., Mazumder, R., & Sarkar, S. (1997). Tidal sandwaves and related storm deposits in the transgressive Protoproterozoic Chaibasa Formation, India. Precambrian Research, 84, 63–81.

    Article  Google Scholar 

  • Bose, P. K., Sarkar, S., Mukhopadhyay, S., Saha, B., & Eriksson, P. (2008). Precambrian basin-margin fan deposits: Mesoproterozoic Bagalkot Group, India. Precambrian Research, 162, 264–283.

    Google Scholar 

  • Bridge, J. S. (1993). The interaction between channel geometry, water flow, sediment transport and deposition in braided rivers, In J. L. Best & C. S. Bristow (Eds.), Braided rivers (pp. 13–72). Geological Society of London (Special Publication no. 75).

    Article  Google Scholar 

  • Bridge, J. S. (1997). Thickness of sets of cross strata and planar strata as a function of formative bed-wave geometrical migration. Geology, 25, 971–974.

    Article  Google Scholar 

  • Bridge, J. S. (2003). Rivers and floodplains (504p). Oxford: Blackwell Scientific.

    Google Scholar 

  • Bridge, J. S. (2006). Fluvial facies models. In Posamentier, H., Walker, R. G. (Eds.), Facies models revisited (Vol. 84, pp. 85–170). SEPM (Spec. Publ.).

    Chapter  Google Scholar 

  • Bridge, J. S., & Mackey, S. D. (1993a). A theoretical study of fluvial sandstone body dimensions. In S. S. Flint & I. D. Bryant (Eds.), Geological modeling of hydrocarbon reservoirs (pp. 213–236). International Association of Sedimentologists (Special Publication 15).

    Chapter  Google Scholar 

  • Bridge, J. S. & Mackey, S. D. (1993b). A revised alluvial stratigraphy model. In M. Marzo & C. Puigdefabregas (Eds.), Alluvial sedimentation (pp. 319–336). International Association of Sedimentologists (Special Publication 17).

    Google Scholar 

  • Bridge, J. S., & Tye, R. S. (2000). Interpreting the dimensions of ancient fluvial channel bars, channels, and channel belts from wireline-logs and cores. AAPG Bulletine, 84(8), 1205–1228.

    Google Scholar 

  • Bromley, M. H. (1991). Architectural features of the Kayenta formation (Lower Jurassic), Colorado Plateau, USA: Relationship to salt tectonics in the Paradox Basin. Sedimentary Geology, 73(1–2), 77–99.

    Article  Google Scholar 

  • Cant, D. J. (1978). Development of a facies model for sandy braided river sedimentation: Comparison of the South Saskatchewan River and the Battery Point Formation. In A. D. Miall (Ed.), Fluvial sedimentology (pp. 627–639). Calgary: Canadian Society of Petroleum Geologists.

    Google Scholar 

  • Cant, D. J., & Walker, R. G. (1978). Fluvial processes and facies sequences in the sandy braided South Saskatchewan River, Canada. Sedimentology, 25, 625–648.

    Article  Google Scholar 

  • Catuneanu, O. (2003). Sequence stratigraphy of clastic systems. Short Course Notes Geological Association of Canada, 16, 248.

    Google Scholar 

  • Catuneanu, O. (2006). Principles of sequence stratigraphy (336p). Amsterdam: Elsevier.

    Google Scholar 

  • Catuneanu, O., Abreu, V., Bhattacharya, J. P., Blum, M. D., Dalrymple, R. W., Eriksson, P. G., et al. (2009). Towards the standardization of sequence stratigraphy. Earth-Science Reviews, 92, 1–33.

    Article  Google Scholar 

  • Catuneanua, O., & Elango, H. N. (2001). Tectonic control on fluvial styles: The Balfour Formation of the Karoo Basin, South Africa. Sedimentary Geology, 140, 291–313.

    Article  Google Scholar 

  • Chakraborty, T. (1991). Sedimentology of a Proterozoic era: The Venkatpur Sandstone, Pranhita-Godavari Valley, south India. Sedimentology, 38, 301–322.

    Article  Google Scholar 

  • Chakraborty, C., & Bose, P. K. (1992). Ripple-dune to upper stage plane-bed transition: Some observations from the ancient record. Geological Journal, 27, 349–359.

    Article  Google Scholar 

  • Chamyal, L. S., Khadkikar, A. S., Malik, J. N., & Maurya, D. M. (1997). Sedimentology of the Narmada alluvial fan, western India. Sedimentary Geology, 107, 263–279.

    Article  Google Scholar 

  • Collinson, J. D. (1996). Alluvial sediments. In H. G. Reading (Ed.), Sedimentary environments: Processes, facies and stratigraphy (3rd ed., pp. 37–82). Oxford: Blackwell Science.

    Google Scholar 

  • Collinson, J. D., & Thompson, D. B. (1989). Sedimentary structures (2nd ed., p. 207). London: Unwin Hyman.

    Google Scholar 

  • Cotter, E. (1978). The evolution of fluvial style, with special reference to the central Appalachian palaeozoic. In A. D. Miall (Ed.), Fluvial sedimentology (Vol. 5, pp. 361–383). Calgary: Canadian Society of Petroleum Geologists.

    Google Scholar 

  • Dahle, K., Flesja, K., Talbot, M. R., & Dreyer, T. (1997). Correlation of fluvial deposits by the use of Sm-Nd isotope analysis and mapping of sedimentary architecture in the Escanilla Formation (Ainsa Basin, Spain) and the Statfjord Formation (Norwegian North Sea). In Abstracts, Sixth International Conference on Fluvial Sedimentology, Cape Town, South Africa (p. 46).

    Google Scholar 

  • Dey, S., Rai, A. K., & Chaki, A. (2009). Palaeoweathering, composition and tectonics of provenance of the Proterozoic intracratonic Kaladgi-Badami basin, Karnataka, southern India: Evidence from sandstone petrography and geochemistry. Journal of Asian Earth Science, 34, 703–715.

    Article  Google Scholar 

  • Eberth, D. A., & Miall, A. D. (1991). Stratigraphy, sedimentology and evolution of a vertebrate- bearing, braided to anastomosed fluvial system, Cutler Formation (Permian Pennsylvanian), north-central New Maxico. Sedimentary Geology, 72, 225–252.

    Article  Google Scholar 

  • Els, B. G. (1990). Determination of some palaeohydraulic parameters for a fluvial Witwatersrand succession. South African Journal of Geology, 93, 531–537.

    Google Scholar 

  • Eriksson, P. G., Bumby, A. J., Brümer, J. J., & van der Neut, M. (2006a). Precambrian fluvial deposits: Enigmatic palaeohydrological data from the c. 2–1.9 Ga Waterberg Group, South Africa. Sedimentary Geology, 190(1–4), 25–46.

    Article  Google Scholar 

  • Eriksson, K. A., Simpson, E. L., & Mueller, W. (2006b). An unusual fluvial to tidal transition in the mesoarchean Moodies Group, South Africa: A response to high tidal range and active tectonics. Sedimentary Geology, 190(1–4), 13–24.

    Article  Google Scholar 

  • Ethridge, F. G., & Schumm, S. A. (1978). Reconstructing paleochannel morphologic and flow characteristics: Methodology, limitations and assessment. In A. D. Miall (Ed.), Fluvial sedimentology (pp. 703–721). Calgary: Canadian Society of Petroleum Geologists.

    Google Scholar 

  • Eriksson, P.G., Condie, K.C., Tirsgaard, H., Mueller, W.U., Altermann, W., Miall, A.D., et al. (1998). Precambrian clastic sedimentation systems. Sedimentary Geology, 120(1–4), 5–53.

    Article  Google Scholar 

  • Fielding, C. R. (1993). A review of recent research in fluvial sedimentology. Sedimentary Geology, 85, 3–14.

    Article  Google Scholar 

  • Frostick, L. E., & Reid, I. (1989). Climatic versus tectonic controls of fan sequences: Lessons from the Dead Sea, Israel. Journal of Geological Society of London, 146, 527–538.

    Article  Google Scholar 

  • Fuller, A. O. (1985). A contribution to the conceptual modelling of pre-Devonian fluvial systems. Transactions on Geological Society of South Africa, 88, 189–194.

    Google Scholar 

  • Gani, M. R., & Alam, M. M. (2004). Fluvial facies architecture in small-scale river systems in the Upper Dupi Tila Formation, northeast Bengal Basin, Bangladesh. Journal of Asian Earth Science, 24, 225–236.

    Article  Google Scholar 

  • Gao, C., Boreham, S., Preece, R. C., Gibbard, P. L., & Briant, R. M. (2007). Fluvial response to rapid climate change during the Devensian (Weichselian) Lateglacial in the River Great Ouse, southern England, UK. Sedimentary Geology, 202, 193–210.

    Article  Google Scholar 

  • Garuraja, M. N. (1983). Preliminary report on the stromatolites and microbiota from rock formation of Kaladgi basin. Karnataka: Geological Survey of India.

    Google Scholar 

  • Gibling, M. R. (2006). Width and thickness of fluvial channel bodies and valley fills in the geological record: A literature compilation and classification. Journal of Sedimentary Research, 76, 731–770.

    Article  Google Scholar 

  • Gustavson, T. C. (1978). Bed forms and stratification types of modern gravel meander lobes, Nueces River, Texas. Sedimentology, 25(3), 401–426.

    Article  Google Scholar 

  • Hadlari, T., Rainbird, R. H., & Donaldson, J. A. (2006). Alluvial, eolian and lacustrine sedimentology of a Paleoproterozoic half-graben, Baker Lake Basin, Nunavut, Canada. Sedimentary Geology, 190(1–4), 47–70.

    Article  Google Scholar 

  • Hampson, G. J., Howell, J. A., & Flint, S. S. (1999). A sedimentolocical and sequence stratigraphic re-interpretation of the upper Cretaceous prairie canyon member (“Mancos B”) and associated strata, Book Cliffs area, Utah, USA. Journal of Sedimentary Research, 69, 414–433.

    Article  Google Scholar 

  • Harms, J. C., & Fahnstock, R. K. (1965). Stratification, bedforms and flow phenomena (with an example from the Rio Grande). In G. V. Middleton (Ed.), Primary sedimentary structures and their hydrodynamic interpretation (Vol. 12, pp. 84–115). Society of Economic Paleontologists and Mineralogists (Special Publication).

    Chapter  Google Scholar 

  • Harms, J. C., Southard, J. B., Spearing, D. R., & Walker, R. G. (1975). Depositional environments as interpreted from primary sedimentary structures and stratification sequences (161p). Dallas: SEPM Short Course 2.

    Google Scholar 

  • Hassan, M. A. (2005). Characteristics of gravel bars in ephemeral streams. Journal of Sedimentary Research, 75, 29–42.

    Article  Google Scholar 

  • Hegde, G. V., Pujar, G. S., Bhimesen, K., & Gokhale, N. W. (1994). The Kaladge basin: A review (pp. 216–226). Geo Karnataka, NGD Centenary Volume.

    Google Scholar 

  • Hjellbakk, A. (1997). Facies and fluvial architecture of a high-energy braided river: The Upper Proterozoic Seglodden Member, Varanger Peninsula, northern Norway. Sedimentary Geology, 114, 131–161.

    Article  Google Scholar 

  • Holbrook, J. M. (2001). Origin, genetic interrelationships, and stratigraphy over them continuum of fluvial channel-form bounding surfaces: An illustration from middle Cretaceous strata, southeastern Colorado. Sedimentary Geology, 124, 202–246.

    Google Scholar 

  • Holbrook, J. M., Scott, R. W., & Oboh-Ikuenobe, F. E. (2006). Base-level buffers and buttresses: A model for upstream versus downstream control on fluvial geometry and architecture within sequences. Journal of Sedimentary Research, 76, 162–174.

    Article  Google Scholar 

  • Hunter, R. E. (1977). Basic types of stratification in small eolian dunes. Sedimentology, 24, 429–454.

    Article  Google Scholar 

  • Hunter, R. E. (1981). Stratification styles in eolian sandstones: Some Pennsylvanian to Jurassic examples from the Western Interior U.S.A. In F. G. Ethridge & R .M. Flores (Eds.), Recent and ancient nonmarine depositional environments: Models for exploration (pp. 315–329). Society of Economic Paleontologists (Special Publication 31).

    Chapter  Google Scholar 

  • Hunter, R. E., & Rubin, D. M. (1983). Interpreting cyclic crossbedding, with an example from the Navajo Sandstone. In M. E. Brookfiel & T. S. Ahlbrandt (Eds.), Developments in sedimentology (Vol. 38, pp. 429–454). Amsterdam: Elsevier.

    Google Scholar 

  • Ito, M., Matsukawa, M., Saito, T., & Nichols, D. L. (2006). Facies architecture and palaeohydrology of a synrift succession in the Early Cretaceous Choyr Basin, southeastern Mongolia. Cretaceous Reseach, 27, 226–240.

    Article  Google Scholar 

  • Jayaprakash, A. V., Sundaram, V., Hans, K., & Mishra, R. N. (1987). Geology of the Kaladgi-Badami Basin, Karnataka. In Purana Basins of Peninsular India (middle to late Proterozoic) (Vol. 6, pp. 201–225). Memoirs of Geological Society of India.

    Google Scholar 

  • Kale, V. S. (1991). Constraints on the evolution of the Purana Basins of Peninsular India. Journal of Geological Socirty of India, 38(3), 231–252.

    Google Scholar 

  • Kale, V. S., Patil-Pillai, S., Jayaprakash, A. V., Pandit, S. A., & Sawkar, R. H. (1999). Field workshop on integrated evaluation of the Kaladgi and Bhima Basins (74p). Bangalore: Geological Society of India.

    Google Scholar 

  • Kale, V. S., & Peshwa, V. V. (1995). Bhima Basin (pp. 63–73). Geological Society of India.

    Google Scholar 

  • Kale, V. S., & Phansalkar, V. G. (1991). Purana basins of peninsular India: A review. Basin Research, 3, 1–36.

    Article  Google Scholar 

  • Kirk, M. (1983). Bar development in a fluvial sandstone (West-phalian ‘A’), Scotland. Sedimentology, 30, 727–742.

    Article  Google Scholar 

  • Kocurek, G. (1991). Interpretation of ancient eolian sand dunes. Annual Review of Earth and Planetary Sciences, 19, 43–75.

    Article  Google Scholar 

  • Kocurek, G., & Feilder, G. (1982). Adhesion structures. Journal of Sedimentary Petrology, 52, 1229–1241.

    Google Scholar 

  • Labourdette, R., & Jones, R. R. (2007). Characterization of fluvial architectural elements using a three-dimensional outcrop dataset: Escanilla braided system, South-Central Pyrenees, Spain. Geosphere, 3(4), 422–434.

    Article  Google Scholar 

  • Leclair, S. F., & Bridge, J. S. (2001). Quantitative interpretation of sedimentary structures formed by river dunes. Journal of Sedimentary Research, 71(5), 713–716.

    Article  Google Scholar 

  • Leclair, S. F., Bridge, J. S., & Wang, F. (1997). Preservation of cross strata due to migration of subaquaous dunes over aggrading and non-aggrading beds: Comparison of experimental data with theory. Sedimentology, 46, 189–200.

    Google Scholar 

  • Leeder, M. R. (1973). Fluvaltile fining upward cycles and the magnitude of the palaeochannels. Geological Magazine, 110, 265–276.

    Article  Google Scholar 

  • Leeder, M. R. (1978). A quantitative stratigraphic model for alluvium, with special reference to channel deposit density and interconnectedness. In A. D. Miall (Ed.), Fluvial sedimentology (pp. 587–596). Calgary: Canadian Society of Petroleum Geologists.

    Google Scholar 

  • Leopold, L. B. (1953). Downstream change of velocity in rivers. American Journal of Science, 251, 606–624.

    Article  Google Scholar 

  • Leopold, L. B., & Maddock, T., Jr. (1953). Relation of suspended sediment concentration to channel scour and fill. In Fifth Iowa Hydraulic Conference Proceedings, Iowa University Studies Engineer (Vol. 34, pp. 159–178).

    Google Scholar 

  • Leopold, L. B., & Miller, J. P. (1956). Ephemeral streams: Hydraulic factors and their relation to drainage net (38p). U.S. Geological Survey, Prof. Paper 282-A.

    Google Scholar 

  • Leopold, L. B., Wolman, G. M., & Miller, J. P. (1964). Fluvial processes in river geomorphology (p. 522). San Francisco: Freeman.

    Google Scholar 

  • Long, D. G. F. (1978). Proterozoic stream deposits: Some problems of recognition and interpretation of ancient fluvial systems. In A. D. Miall (Ed.), Fluvial sedimentology (pp. 313–341). Calgary: Canadian Society of Petroleum Geologists.

    Google Scholar 

  • Long, D. G. F. (2004). Precambrian rivers. In P. G. Eriksson, W. Altermann, D. R. Nelson, W. U. Mueller, & O. Catuneanu (Eds.), The Precambrian Earth: Tempos and events (pp. 660–663). Amsterdam: Elsevier.

    Google Scholar 

  • Long, D. G. F. (2006). Architecture of pre-vegetation sandy-braided perennial and ephemeral river deposits in the Paleoproterozoic Athabasca Group, northern Saskatchewan, Canada as indicators of Precambrian fluvial style. Sedimentary Geology, 190(1–4), 71–95.

    Article  Google Scholar 

  • Long, D. G. F. (2011). Architecture and depositional style of fluvial systems before land plants: A comparison of Precambrian, early Paleozoic, and modern river deposits. In C. North (Ed.), From river to rock record: The preservation of fluvial sediments and their subsequent interpretation (Vol. 97, pp. 37–61). SEPM (Special Publication).

    Google Scholar 

  • Mazumder, R., & Sarkar, S. (2004). Sedimentation history of the Palaeoproterozoic Dhanjori Formation, Singhbhum, eastern India. Precambrian Research, 130(1–4), 267–287.

    Article  Google Scholar 

  • Miall, A. D. (1985). Architectural element analysis: A new method of facies analysis applied to fluvial deposits. Earth-Science Reviews, 22, 261–308.

    Article  Google Scholar 

  • Miall, A. D. (1988). Facies architecture in clastic sedimentary basins. In K. Kleinspehn & C. Paola (Eds.), New perspective in basin analysis (pp. 67–81). Berlin: Springer.

    Chapter  Google Scholar 

  • Miall, A. D. (1994). Reconstruction of fluvial macroform architecture from two-dimensional outcrops: Examples from the Castlegate Sandstone, Book Cliffs, Utah. Journal of Sedimentary Research, B64(2), 146–158.

    Google Scholar 

  • Miall, A. D. (1996). The geology of fluvial deposits: Sedimentary facies, basin analysis and petroleum geology (582p). Berlin: Springer.

    Google Scholar 

  • Miall, A. D. (2006). How do we identify big rivers? And how big is big? Sedimentary Geology, 186, 39–50.

    Article  Google Scholar 

  • Miall, A. D. (2014). Fluvial depositional systems (316p). Berlin: Springer.

    Book  Google Scholar 

  • Miall, A. D., & Jones, B. (2003). Fluvial architecture of the Hawkesbury Sandstone (Triassic), near Sydney, Australia. Journal of Sedimentary Research, 73, 531–545.

    Article  Google Scholar 

  • Milana, J. P., & Tietze, K. W. (2002). Three-dimensional analogue modeling of an alluvial basin margin affected by hydrological cycles: Processes and resulting depositional sequences. Basin Research, 14, 237–264.

    Article  Google Scholar 

  • Mukhopadhyay, S. (2012). Evolutionary history of Proterozoic fluvial basins within Bagalkot Group and Rewa Formation: Facies, palaeogeography and stratigraphic architecture (Unpublished Ph.D. Thesis, 255p). Jadavpur University.

    Google Scholar 

  • Mukhopadhyay, S., Choudhuri, A., Samanta, P., Sarkar, S., & Bose, P. K. (2014). Were the hydraulic parameters of Precambrian rivers different? Journal of Asian Earth Sciences, 91, 289–297.

    Article  Google Scholar 

  • Olsen, H. (1988). The architecture of a sandy braided-meandering river system: An example from the lower Triassic soiling formation (M. Buntsandstein) in W-Germany. International Journal of Earth Sciences, 77(3), 797–814.

    Google Scholar 

  • Olsen, H. (1989). Sandstone-body structures and ephemeral stream processes in the Dinosaur Canyon Member, Moenave Formation (Lower Jurassic), Utah, U.S.A. Sedimentary Geology, 61, 207–221.

    Article  Google Scholar 

  • Osterkamp, W. R., & Hedman, E. R. (1982). Perennial stream flow characteristics related to channel geometry and sediment in the Missouri River Basin (37p). Professional Paper USGS 1242.

    Google Scholar 

  • Petts, G. E., & Amoros, C. (1996). Fluvial hydrosystems (322p). London: Chapman and Hall.

    Google Scholar 

  • Pfluger, F., & Seilacher, A. (1991). Flash flood conglomerates. In G. Einsele, W. Ricken, & A. Seilacher (Eds.), Cycles and events in stratigraphy (pp. 383–391). Berlin: Springer.

    Google Scholar 

  • Posamentier, H. W., & Allen, G. P. (1999). Siliciclastic sequence stratigraphy: Concepts and applications. SEPM Concepts in Sedimentology and Paleontology, 9, 210.

    Google Scholar 

  • Posamentier, H. W., & Walker, R. G. (2006). Deep-water turbidites and submarine fans. In: H. W. Posamentier & R. G. Walker (Eds.), Facies models revisited (pp. 399–520). Society for Economic geology, Palaeontology and Mineralogy (Special Publication 84).

    Chapter  Google Scholar 

  • Radhakrishna, B. P., & Vaidyanadhan, R. (1997). Geology of Karnataka (353p). Bangalore: Geological Society of India.

    Google Scholar 

  • Raha, P. K., & Sastry, M. V. A. (1982). Stromatolites and Precambrian Stratigraphy in India. Precambrian Research, 18, 293–318.

    Article  Google Scholar 

  • Rainbird, R. H. (1992). Anatomy of a large-scale braid-plain quartzarenite from the Neoproterozoic Shaler Group, Victoria Island, Northwest Territories, Canada. Canadian Journal of Earth Sciences, 29, 2537–2550.

    Article  Google Scholar 

  • Reading, H. G. (1986). Sedimentary environments and facies (2nd Ed., 524p). Oxford: Blackwell.

    Google Scholar 

  • Reading, H. G. (1996). Sedimentary environments: Processes, facies and stratigraphy (688p). Oxford: Blackwell Science.

    Google Scholar 

  • Rogers, J. J. W. (1993). India and Ur. Journal of Geological Socirty of India, 42, 217–222.

    Google Scholar 

  • Rygel, M. C., & Gibling, M. R. (2006). Natural geomorphic variability recorded in a high-accommodation setting: Fluvial architecture of the Pennsylvanian Joggins Formation of Atlantic Canada. Journal of Sedimentary Research, 76, 1230–1251.

    Article  Google Scholar 

  • Sambrook Smith, G. H., Best, J. L, Bristow, C. S, & Petts, G. E. (2006). Braided rivers: Process, deposits, ecology and management (396p). Oxford: Blackwell.

    Google Scholar 

  • Sarkar, S., Mazumder, R., & Bose, P. K. (1999). Changed bedform dynamics: Some observations from Proterozoic Chaibasa formation, India. Journal of Indian Association of Sedimentologists, 18, 31–40.

    Google Scholar 

  • Sarkar, S., Samanta, P., Mukhopadhyay, S., & Bose, P. K. (2012). Stratigraphic architecture of the Sonia Fluvial interval, India in its Precambrian context. Precambrian Research, 214–215, 210–226.

    Article  Google Scholar 

  • Sathyanarayana, S. (1994). The Younger Proterozoic Badami Group, northern Karnataka. In Geo-Karnataka (pp. 227–233). Mysore Geological Department Centenary..

    Google Scholar 

  • Schumm, S. A. (1968a). River adjustment to altered hydrologic regiment-Murrumbidgee River and palaeochannels, Australia (65p). Professional Paper UGGS 598.

    Google Scholar 

  • Schumm, S. A. (1968b). Speculations concerning palaeohydrologic controls of terrestrial sedimentation. Geological Society of America Bulletin, 79, 1573–1588.

    Article  Google Scholar 

  • Schumm, S. A. (1969). River metamorphosis. In Proceedings of American Society of Civil Engineers (Vol. 95 (HYI), pp. 255–273). J. Hydraul. Div.

    Google Scholar 

  • Schumm, S. A. (1972). Fluvial palaeochannels. In J. K. Rigby & W. K. Hamblin (Eds.), Recognition of ancient sedimentary environments (Vol. 16, pp. 98–107). SEPM.

    Chapter  Google Scholar 

  • Schumm, S. A., Mosely, M. P., & Weaver, W. E. (1987). Experimental fluvial geomorphology. New York: Wiley.

    Google Scholar 

  • Simons, D. B., Richardson, E. V., & Nordin, C. L., Jr. (1965). Sedimentary structures generated by flow in alluvial channels. In G. V. Middelton (Ed.), Primary sedimentary structures and their hydrodynamic interpretation (Vol. 12, pp. 84–115). Society of Economic Paleontologists (Special Publication).

    Chapter  Google Scholar 

  • Singh, H., Parkash, B., & Gohain, K. (1993). Facies analysis of the Kosi megafan deposits. Sedimentary Geology, 85(1–4), 87–113.

    Article  Google Scholar 

  • Smith, N. D. (1970). The braided stream depositional environment: Comparison of the Platte River with some Silurian clastic rocks, North Central Appalachians. Geological Society of America Bulletin, 81, 2993–3014.

    Article  Google Scholar 

  • Smith, N. D., & Rogers, J. (1999). Fluvial sedimentology (VI ed., p. 478). Oxford: Blackwell Sciences.

    Book  Google Scholar 

  • Sønderholm, M., & Tirsgaard, H. (1998). Proterozoic fluvial styles: Response to base-level changes and climate (Riveradal sandstones, eastern North Greenland). Sedimentary Geology, 120, 257–274.

    Article  Google Scholar 

  • Suter, J. R., & Clifton, H. E. (1999). The Shannon Sandstone and isolated linear sand bodies: Interpretations and realizations. In K. M., Bergman & J. W. Snedden (Eds.), Isolated shallow marine sand bodies: Sequence stratigraphic analysis and sedimentological interpretation (Vol. 64, pp. 321–356). Society of Economic Paleontologists.

    Chapter  Google Scholar 

  • Tirsgaard, H., & Øxnevad, I. E. I. (1998). Preservation of pre-vegetational mixed fluvio-aeolian deposits in a humid climatic setting: An example from the Middle Proterozoic Eriksfjord Formation, Southwest Greenland. Sedimentary Geology, 120(1–4), 295–317.

    Article  Google Scholar 

  • Van der Nuet, M., & Eriksson, P. G. (1999). Palaeohydrolical parameters of a Proterozoic braided fluvial system (Wilgerivier Formation, Waterberg, South Africa) compared with a Phanerozoic example. International Association of Sedimentologists, 28, 381–392.

    Google Scholar 

  • Van Wagoner, J. C. (1995). Overview of sequence Stratigraphy of foreland basin deposits. In J. C. Van Wagoner & G. T. Bertram (Eds.), Sequence Stratigraphy of Foreland Basin deposits (Vol. 64, pp. 9–21). AAPG Memoir.

    Google Scholar 

  • Viswanathiah, M. N., & Venkatachalapathy, V. (1980). Microbiota from the Bababudan Iron Formation, Karnataka. Journal of Geological Society of India, 21, 16–20.

    Google Scholar 

  • Walker, R. G. (1984). Turbidites and associated coarse clastic deposits. In R. G. Walker (Ed.), Facies models (2nd ed., pp. 171–188). Toronto: Geological Association of Canada.

    Google Scholar 

  • Whipple, K. X., Parker, G., Paola, C., & Mohrig, D. (1998). Channel dynamics, sediment transport and the slope of alluvial fans: Experimental study. Journal of Sedimentary Research 677–693.

    Article  Google Scholar 

  • Williams, G. P. (1978). Bank-full discharge of rivers. Water Resources Research, 14(6), 1141–1154

    Article  Google Scholar 

  • Williams, G. P. (1984). Palaeohydrologic equations for rivers. In J. E. Costa & P. J. Flcisher (Eds.), Development and application of geomorphology (pp. 343–367). Berlin: Spinger.

    Chapter  Google Scholar 

  • Yalin, M. S. (1964). Geometrical properties of sand waves. In Proceedings of American Society of Civil Engineers (Vol. 90 (HY5), Part I, pp. 105–119).

    Google Scholar 

  • Yu, X., Ma, X., & Quing, H. (2002). Sedimentology and reservoir characteristics of a Middle Jurassic fluvial system, Datong Basin, northern China. Bulletin of Canadian Petroleum Geology, 50(1), 105–117.

    Article  Google Scholar 

  • Zaitlin, B. A., Potocki, D., Warren, M., Rosenthal, L., & Boyd, R. (1999). Sequence stratigraphy in low accommodation foreland basins: An example form the lower Cretaceous Basal Quartz Formation of southern Alberta. Canadian Association of Petroleum Geologist Reservoir, 26, 12–13.

    Google Scholar 

Download references

Acknowledgements

SM and SS acknowledge financial support received from DST, Govt. of India and UPE II programme of Jadavpur University. The authors acknowledge the Department of Geological Sciences of Jadavpur University and Department of Geology, Durgapur Government College for the infrastructural help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumik Mukhopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukhopadhyay, S., Samanta, P., Bhattacharya, S., Sarkar, S. (2019). Stratigraphic Evolution and Architecture of the Terrestrial Succession at the Base of the Neoproterozoic Badami Group, Karnataka, India. In: Mondal, M. (eds) Geological Evolution of the Precambrian Indian Shield. Society of Earth Scientists Series. Springer, Cham. https://doi.org/10.1007/978-3-319-89698-4_6

Download citation

Publish with us

Policies and ethics