Stratigraphic Evolution and Architecture of the Terrestrial Succession at the Base of the Neoproterozoic Badami Group, Karnataka, India

  • Soumik MukhopadhyayEmail author
  • Pradip Samanta
  • Sinchan Bhattacharya
  • Subir Sarkar
Part of the Society of Earth Scientists Series book series (SESS)


The multistoried siliciclastic succession at the base of basal Kerur Formation of the Neoproterozoic Badami Group shows ample variations in sequence building pattern within the ambit of the Precambrian fluvial sedimentation system. Detailed facies, architectural element, paleocurrent as well as stratigraphic architectural analysis invariably revealed a frequently avulsive braided pattern, with flashy discharges, for the paleoriver system; which is consistent with the basic tenet of the Precambrian alluvial sedimentation. Rare eolian features suggest seasonal flow fluctuations, referring to the semiperennial nature of the fluvial system. The studied interval represents a single valley fill, internally constituted by seven vertically juxtaposed channel belts. Each channel belt is fining upward along with the overall grain-size reduction up the succession. While the older channel belts inferred to be braided, channels possibly become more sinuous towards the top of the succession, as inferred from the appearance of bank-attached bars along with the omnipresent longitudidal bars. Flow durability within channel also increases with time, as the lower two belts appear to be ephemeral with highest energy flashy discharges, changing into semiperennial to perennial one upward. Bounded between an unconformity below and a thoroughly wave-featured limestone unit above, the coarse and poorly sorted clastic sedimentary rocks at the base of the basal Kerur Formation are interpreted as a base-level lowstand product, indicating gradual filling of the paleoriver valley under the backdrop of slow rise in base profile. Tectonics-related generation of accommodation space as well as the rejuvenation of slope along and across the basin-margin dictated the sediment distribution and sequence building pattern primarily. The increase in channel sinuosity up-the-succession is governed by the raised rate of base profile rise, which ultimately leads to termination of the terrestrial depositional system by complete marine inundation.


Neoproterozoic Badami group Fluvial sedimentation system Braided and semiperennial Base profile Aggradation with intermittent small-scale tectonic activity 



SM and SS acknowledge financial support received from DST, Govt. of India and UPE II programme of Jadavpur University. The authors acknowledge the Department of Geological Sciences of Jadavpur University and Department of Geology, Durgapur Government College for the infrastructural help.


  1. Allen, J. R. L. (1968). Current ripples (433p). Amsterdam: North-Holland Publishing Co.Google Scholar
  2. Allen, J. R. L. (1970). Physical processes of sedimentation (248p). London: Allen and Unwin.Google Scholar
  3. Allen, J. R. L. (1982). Sedimentary structures: Their character and physical basis. Developments in Sedimentology, 30, 593.Google Scholar
  4. Bartholdy, J., & Billi, P. (2002). Morphodynamics of a pseudomeandering gravel bar reach. Geomorphology, 42(3–4), 293–310.CrossRefGoogle Scholar
  5. Best, J. L., Ashworth, P. J., Bristow, C. S., & Roden, J. (2003). Three-dimensional sedimentary architecture of a large, Mid-Channel Sand Braid Bar, Jamuna River, Bangladesh. Journal of Sedimentary Research, 73(4), 516–530.CrossRefGoogle Scholar
  6. Blair, T. C., & McPherson, J. G. (1994). Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages. Journal of Sedimentary Research, Part A, 64, 450–489.Google Scholar
  7. Blatt, H., Middleton, G. V., & Murray, R. (1980). Origin of sedimentary rocks (2nd Ed., 782p). Englewood Cliffs, N.J.: Prentice Hall.Google Scholar
  8. Blum, M., & Tornqvist, T. (2000). Fluvial responses to climate and sea-level change: A review and forward. Sedimentology, 47, 2–48.CrossRefGoogle Scholar
  9. Bose, P. K., Eriksson, P. G., Sarkar, S., Wright, D., Samanta, P., Mukhopadhyay, S., et al. (2012). Sedimentation patterns during the Precambrian: A unique record? Marine and Petroleum Geology, 33, 34–68.CrossRefGoogle Scholar
  10. Bose, P. K., Mazumder, R., & Sarkar, S. (1997). Tidal sandwaves and related storm deposits in the transgressive Protoproterozoic Chaibasa Formation, India. Precambrian Research, 84, 63–81.CrossRefGoogle Scholar
  11. Bose, P. K., Sarkar, S., Mukhopadhyay, S., Saha, B., & Eriksson, P. (2008). Precambrian basin-margin fan deposits: Mesoproterozoic Bagalkot Group, India. Precambrian Research, 162, 264–283.Google Scholar
  12. Bridge, J. S. (1993). The interaction between channel geometry, water flow, sediment transport and deposition in braided rivers, In J. L. Best & C. S. Bristow (Eds.), Braided rivers (pp. 13–72). Geological Society of London (Special Publication no. 75).CrossRefGoogle Scholar
  13. Bridge, J. S. (1997). Thickness of sets of cross strata and planar strata as a function of formative bed-wave geometrical migration. Geology, 25, 971–974.CrossRefGoogle Scholar
  14. Bridge, J. S. (2003). Rivers and floodplains (504p). Oxford: Blackwell Scientific.Google Scholar
  15. Bridge, J. S. (2006). Fluvial facies models. In Posamentier, H., Walker, R. G. (Eds.), Facies models revisited (Vol. 84, pp. 85–170). SEPM (Spec. Publ.).CrossRefGoogle Scholar
  16. Bridge, J. S., & Mackey, S. D. (1993a). A theoretical study of fluvial sandstone body dimensions. In S. S. Flint & I. D. Bryant (Eds.), Geological modeling of hydrocarbon reservoirs (pp. 213–236). International Association of Sedimentologists (Special Publication 15).CrossRefGoogle Scholar
  17. Bridge, J. S. & Mackey, S. D. (1993b). A revised alluvial stratigraphy model. In M. Marzo & C. Puigdefabregas (Eds.), Alluvial sedimentation (pp. 319–336). International Association of Sedimentologists (Special Publication 17).Google Scholar
  18. Bridge, J. S., & Tye, R. S. (2000). Interpreting the dimensions of ancient fluvial channel bars, channels, and channel belts from wireline-logs and cores. AAPG Bulletine, 84(8), 1205–1228.Google Scholar
  19. Bromley, M. H. (1991). Architectural features of the Kayenta formation (Lower Jurassic), Colorado Plateau, USA: Relationship to salt tectonics in the Paradox Basin. Sedimentary Geology, 73(1–2), 77–99.CrossRefGoogle Scholar
  20. Cant, D. J. (1978). Development of a facies model for sandy braided river sedimentation: Comparison of the South Saskatchewan River and the Battery Point Formation. In A. D. Miall (Ed.), Fluvial sedimentology (pp. 627–639). Calgary: Canadian Society of Petroleum Geologists.Google Scholar
  21. Cant, D. J., & Walker, R. G. (1978). Fluvial processes and facies sequences in the sandy braided South Saskatchewan River, Canada. Sedimentology, 25, 625–648.CrossRefGoogle Scholar
  22. Catuneanu, O. (2003). Sequence stratigraphy of clastic systems. Short Course Notes Geological Association of Canada, 16, 248.Google Scholar
  23. Catuneanu, O. (2006). Principles of sequence stratigraphy (336p). Amsterdam: Elsevier.Google Scholar
  24. Catuneanu, O., Abreu, V., Bhattacharya, J. P., Blum, M. D., Dalrymple, R. W., Eriksson, P. G., et al. (2009). Towards the standardization of sequence stratigraphy. Earth-Science Reviews, 92, 1–33.CrossRefGoogle Scholar
  25. Catuneanua, O., & Elango, H. N. (2001). Tectonic control on fluvial styles: The Balfour Formation of the Karoo Basin, South Africa. Sedimentary Geology, 140, 291–313.CrossRefGoogle Scholar
  26. Chakraborty, T. (1991). Sedimentology of a Proterozoic era: The Venkatpur Sandstone, Pranhita-Godavari Valley, south India. Sedimentology, 38, 301–322.CrossRefGoogle Scholar
  27. Chakraborty, C., & Bose, P. K. (1992). Ripple-dune to upper stage plane-bed transition: Some observations from the ancient record. Geological Journal, 27, 349–359.CrossRefGoogle Scholar
  28. Chamyal, L. S., Khadkikar, A. S., Malik, J. N., & Maurya, D. M. (1997). Sedimentology of the Narmada alluvial fan, western India. Sedimentary Geology, 107, 263–279.CrossRefGoogle Scholar
  29. Collinson, J. D. (1996). Alluvial sediments. In H. G. Reading (Ed.), Sedimentary environments: Processes, facies and stratigraphy (3rd ed., pp. 37–82). Oxford: Blackwell Science.Google Scholar
  30. Collinson, J. D., & Thompson, D. B. (1989). Sedimentary structures (2nd ed., p. 207). London: Unwin Hyman.Google Scholar
  31. Cotter, E. (1978). The evolution of fluvial style, with special reference to the central Appalachian palaeozoic. In A. D. Miall (Ed.), Fluvial sedimentology (Vol. 5, pp. 361–383). Calgary: Canadian Society of Petroleum Geologists.Google Scholar
  32. Dahle, K., Flesja, K., Talbot, M. R., & Dreyer, T. (1997). Correlation of fluvial deposits by the use of Sm-Nd isotope analysis and mapping of sedimentary architecture in the Escanilla Formation (Ainsa Basin, Spain) and the Statfjord Formation (Norwegian North Sea). In Abstracts, Sixth International Conference on Fluvial Sedimentology, Cape Town, South Africa (p. 46).Google Scholar
  33. Dey, S., Rai, A. K., & Chaki, A. (2009). Palaeoweathering, composition and tectonics of provenance of the Proterozoic intracratonic Kaladgi-Badami basin, Karnataka, southern India: Evidence from sandstone petrography and geochemistry. Journal of Asian Earth Science, 34, 703–715.CrossRefGoogle Scholar
  34. Eberth, D. A., & Miall, A. D. (1991). Stratigraphy, sedimentology and evolution of a vertebrate- bearing, braided to anastomosed fluvial system, Cutler Formation (Permian Pennsylvanian), north-central New Maxico. Sedimentary Geology, 72, 225–252.CrossRefGoogle Scholar
  35. Els, B. G. (1990). Determination of some palaeohydraulic parameters for a fluvial Witwatersrand succession. South African Journal of Geology, 93, 531–537.Google Scholar
  36. Eriksson, P. G., Bumby, A. J., Brümer, J. J., & van der Neut, M. (2006a). Precambrian fluvial deposits: Enigmatic palaeohydrological data from the c. 2–1.9 Ga Waterberg Group, South Africa. Sedimentary Geology, 190(1–4), 25–46.CrossRefGoogle Scholar
  37. Eriksson, K. A., Simpson, E. L., & Mueller, W. (2006b). An unusual fluvial to tidal transition in the mesoarchean Moodies Group, South Africa: A response to high tidal range and active tectonics. Sedimentary Geology, 190(1–4), 13–24.CrossRefGoogle Scholar
  38. Ethridge, F. G., & Schumm, S. A. (1978). Reconstructing paleochannel morphologic and flow characteristics: Methodology, limitations and assessment. In A. D. Miall (Ed.), Fluvial sedimentology (pp. 703–721). Calgary: Canadian Society of Petroleum Geologists.Google Scholar
  39. Eriksson, P.G., Condie, K.C., Tirsgaard, H., Mueller, W.U., Altermann, W., Miall, A.D., et al. (1998). Precambrian clastic sedimentation systems. Sedimentary Geology, 120(1–4), 5–53.CrossRefGoogle Scholar
  40. Fielding, C. R. (1993). A review of recent research in fluvial sedimentology. Sedimentary Geology, 85, 3–14.CrossRefGoogle Scholar
  41. Frostick, L. E., & Reid, I. (1989). Climatic versus tectonic controls of fan sequences: Lessons from the Dead Sea, Israel. Journal of Geological Society of London, 146, 527–538.CrossRefGoogle Scholar
  42. Fuller, A. O. (1985). A contribution to the conceptual modelling of pre-Devonian fluvial systems. Transactions on Geological Society of South Africa, 88, 189–194.Google Scholar
  43. Gani, M. R., & Alam, M. M. (2004). Fluvial facies architecture in small-scale river systems in the Upper Dupi Tila Formation, northeast Bengal Basin, Bangladesh. Journal of Asian Earth Science, 24, 225–236.CrossRefGoogle Scholar
  44. Gao, C., Boreham, S., Preece, R. C., Gibbard, P. L., & Briant, R. M. (2007). Fluvial response to rapid climate change during the Devensian (Weichselian) Lateglacial in the River Great Ouse, southern England, UK. Sedimentary Geology, 202, 193–210.CrossRefGoogle Scholar
  45. Garuraja, M. N. (1983). Preliminary report on the stromatolites and microbiota from rock formation of Kaladgi basin. Karnataka: Geological Survey of India.Google Scholar
  46. Gibling, M. R. (2006). Width and thickness of fluvial channel bodies and valley fills in the geological record: A literature compilation and classification. Journal of Sedimentary Research, 76, 731–770.CrossRefGoogle Scholar
  47. Gustavson, T. C. (1978). Bed forms and stratification types of modern gravel meander lobes, Nueces River, Texas. Sedimentology, 25(3), 401–426.CrossRefGoogle Scholar
  48. Hadlari, T., Rainbird, R. H., & Donaldson, J. A. (2006). Alluvial, eolian and lacustrine sedimentology of a Paleoproterozoic half-graben, Baker Lake Basin, Nunavut, Canada. Sedimentary Geology, 190(1–4), 47–70.CrossRefGoogle Scholar
  49. Hampson, G. J., Howell, J. A., & Flint, S. S. (1999). A sedimentolocical and sequence stratigraphic re-interpretation of the upper Cretaceous prairie canyon member (“Mancos B”) and associated strata, Book Cliffs area, Utah, USA. Journal of Sedimentary Research, 69, 414–433.CrossRefGoogle Scholar
  50. Harms, J. C., & Fahnstock, R. K. (1965). Stratification, bedforms and flow phenomena (with an example from the Rio Grande). In G. V. Middleton (Ed.), Primary sedimentary structures and their hydrodynamic interpretation (Vol. 12, pp. 84–115). Society of Economic Paleontologists and Mineralogists (Special Publication).CrossRefGoogle Scholar
  51. Harms, J. C., Southard, J. B., Spearing, D. R., & Walker, R. G. (1975). Depositional environments as interpreted from primary sedimentary structures and stratification sequences (161p). Dallas: SEPM Short Course 2.Google Scholar
  52. Hassan, M. A. (2005). Characteristics of gravel bars in ephemeral streams. Journal of Sedimentary Research, 75, 29–42.CrossRefGoogle Scholar
  53. Hegde, G. V., Pujar, G. S., Bhimesen, K., & Gokhale, N. W. (1994). The Kaladge basin: A review (pp. 216–226). Geo Karnataka, NGD Centenary Volume.Google Scholar
  54. Hjellbakk, A. (1997). Facies and fluvial architecture of a high-energy braided river: The Upper Proterozoic Seglodden Member, Varanger Peninsula, northern Norway. Sedimentary Geology, 114, 131–161.CrossRefGoogle Scholar
  55. Holbrook, J. M. (2001). Origin, genetic interrelationships, and stratigraphy over them continuum of fluvial channel-form bounding surfaces: An illustration from middle Cretaceous strata, southeastern Colorado. Sedimentary Geology, 124, 202–246.Google Scholar
  56. Holbrook, J. M., Scott, R. W., & Oboh-Ikuenobe, F. E. (2006). Base-level buffers and buttresses: A model for upstream versus downstream control on fluvial geometry and architecture within sequences. Journal of Sedimentary Research, 76, 162–174.CrossRefGoogle Scholar
  57. Hunter, R. E. (1977). Basic types of stratification in small eolian dunes. Sedimentology, 24, 429–454.CrossRefGoogle Scholar
  58. Hunter, R. E. (1981). Stratification styles in eolian sandstones: Some Pennsylvanian to Jurassic examples from the Western Interior U.S.A. In F. G. Ethridge & R .M. Flores (Eds.), Recent and ancient nonmarine depositional environments: Models for exploration (pp. 315–329). Society of Economic Paleontologists (Special Publication 31).CrossRefGoogle Scholar
  59. Hunter, R. E., & Rubin, D. M. (1983). Interpreting cyclic crossbedding, with an example from the Navajo Sandstone. In M. E. Brookfiel & T. S. Ahlbrandt (Eds.), Developments in sedimentology (Vol. 38, pp. 429–454). Amsterdam: Elsevier.Google Scholar
  60. Ito, M., Matsukawa, M., Saito, T., & Nichols, D. L. (2006). Facies architecture and palaeohydrology of a synrift succession in the Early Cretaceous Choyr Basin, southeastern Mongolia. Cretaceous Reseach, 27, 226–240.CrossRefGoogle Scholar
  61. Jayaprakash, A. V., Sundaram, V., Hans, K., & Mishra, R. N. (1987). Geology of the Kaladgi-Badami Basin, Karnataka. In Purana Basins of Peninsular India (middle to late Proterozoic) (Vol. 6, pp. 201–225). Memoirs of Geological Society of India.Google Scholar
  62. Kale, V. S. (1991). Constraints on the evolution of the Purana Basins of Peninsular India. Journal of Geological Socirty of India, 38(3), 231–252.Google Scholar
  63. Kale, V. S., Patil-Pillai, S., Jayaprakash, A. V., Pandit, S. A., & Sawkar, R. H. (1999). Field workshop on integrated evaluation of the Kaladgi and Bhima Basins (74p). Bangalore: Geological Society of India.Google Scholar
  64. Kale, V. S., & Peshwa, V. V. (1995). Bhima Basin (pp. 63–73). Geological Society of India.Google Scholar
  65. Kale, V. S., & Phansalkar, V. G. (1991). Purana basins of peninsular India: A review. Basin Research, 3, 1–36.CrossRefGoogle Scholar
  66. Kirk, M. (1983). Bar development in a fluvial sandstone (West-phalian ‘A’), Scotland. Sedimentology, 30, 727–742.CrossRefGoogle Scholar
  67. Kocurek, G. (1991). Interpretation of ancient eolian sand dunes. Annual Review of Earth and Planetary Sciences, 19, 43–75.CrossRefGoogle Scholar
  68. Kocurek, G., & Feilder, G. (1982). Adhesion structures. Journal of Sedimentary Petrology, 52, 1229–1241.Google Scholar
  69. Labourdette, R., & Jones, R. R. (2007). Characterization of fluvial architectural elements using a three-dimensional outcrop dataset: Escanilla braided system, South-Central Pyrenees, Spain. Geosphere, 3(4), 422–434.CrossRefGoogle Scholar
  70. Leclair, S. F., & Bridge, J. S. (2001). Quantitative interpretation of sedimentary structures formed by river dunes. Journal of Sedimentary Research, 71(5), 713–716.CrossRefGoogle Scholar
  71. Leclair, S. F., Bridge, J. S., & Wang, F. (1997). Preservation of cross strata due to migration of subaquaous dunes over aggrading and non-aggrading beds: Comparison of experimental data with theory. Sedimentology, 46, 189–200.Google Scholar
  72. Leeder, M. R. (1973). Fluvaltile fining upward cycles and the magnitude of the palaeochannels. Geological Magazine, 110, 265–276.CrossRefGoogle Scholar
  73. Leeder, M. R. (1978). A quantitative stratigraphic model for alluvium, with special reference to channel deposit density and interconnectedness. In A. D. Miall (Ed.), Fluvial sedimentology (pp. 587–596). Calgary: Canadian Society of Petroleum Geologists.Google Scholar
  74. Leopold, L. B. (1953). Downstream change of velocity in rivers. American Journal of Science, 251, 606–624.CrossRefGoogle Scholar
  75. Leopold, L. B., & Maddock, T., Jr. (1953). Relation of suspended sediment concentration to channel scour and fill. In Fifth Iowa Hydraulic Conference Proceedings, Iowa University Studies Engineer (Vol. 34, pp. 159–178).Google Scholar
  76. Leopold, L. B., & Miller, J. P. (1956). Ephemeral streams: Hydraulic factors and their relation to drainage net (38p). U.S. Geological Survey, Prof. Paper 282-A.Google Scholar
  77. Leopold, L. B., Wolman, G. M., & Miller, J. P. (1964). Fluvial processes in river geomorphology (p. 522). San Francisco: Freeman.Google Scholar
  78. Long, D. G. F. (1978). Proterozoic stream deposits: Some problems of recognition and interpretation of ancient fluvial systems. In A. D. Miall (Ed.), Fluvial sedimentology (pp. 313–341). Calgary: Canadian Society of Petroleum Geologists.Google Scholar
  79. Long, D. G. F. (2004). Precambrian rivers. In P. G. Eriksson, W. Altermann, D. R. Nelson, W. U. Mueller, & O. Catuneanu (Eds.), The Precambrian Earth: Tempos and events (pp. 660–663). Amsterdam: Elsevier.Google Scholar
  80. Long, D. G. F. (2006). Architecture of pre-vegetation sandy-braided perennial and ephemeral river deposits in the Paleoproterozoic Athabasca Group, northern Saskatchewan, Canada as indicators of Precambrian fluvial style. Sedimentary Geology, 190(1–4), 71–95.CrossRefGoogle Scholar
  81. Long, D. G. F. (2011). Architecture and depositional style of fluvial systems before land plants: A comparison of Precambrian, early Paleozoic, and modern river deposits. In C. North (Ed.), From river to rock record: The preservation of fluvial sediments and their subsequent interpretation (Vol. 97, pp. 37–61). SEPM (Special Publication).Google Scholar
  82. Mazumder, R., & Sarkar, S. (2004). Sedimentation history of the Palaeoproterozoic Dhanjori Formation, Singhbhum, eastern India. Precambrian Research, 130(1–4), 267–287.CrossRefGoogle Scholar
  83. Miall, A. D. (1985). Architectural element analysis: A new method of facies analysis applied to fluvial deposits. Earth-Science Reviews, 22, 261–308.CrossRefGoogle Scholar
  84. Miall, A. D. (1988). Facies architecture in clastic sedimentary basins. In K. Kleinspehn & C. Paola (Eds.), New perspective in basin analysis (pp. 67–81). Berlin: Springer.CrossRefGoogle Scholar
  85. Miall, A. D. (1994). Reconstruction of fluvial macroform architecture from two-dimensional outcrops: Examples from the Castlegate Sandstone, Book Cliffs, Utah. Journal of Sedimentary Research, B64(2), 146–158.Google Scholar
  86. Miall, A. D. (1996). The geology of fluvial deposits: Sedimentary facies, basin analysis and petroleum geology (582p). Berlin: Springer.Google Scholar
  87. Miall, A. D. (2006). How do we identify big rivers? And how big is big? Sedimentary Geology, 186, 39–50.CrossRefGoogle Scholar
  88. Miall, A. D. (2014). Fluvial depositional systems (316p). Berlin: Springer.CrossRefGoogle Scholar
  89. Miall, A. D., & Jones, B. (2003). Fluvial architecture of the Hawkesbury Sandstone (Triassic), near Sydney, Australia. Journal of Sedimentary Research, 73, 531–545.CrossRefGoogle Scholar
  90. Milana, J. P., & Tietze, K. W. (2002). Three-dimensional analogue modeling of an alluvial basin margin affected by hydrological cycles: Processes and resulting depositional sequences. Basin Research, 14, 237–264.CrossRefGoogle Scholar
  91. Mukhopadhyay, S. (2012). Evolutionary history of Proterozoic fluvial basins within Bagalkot Group and Rewa Formation: Facies, palaeogeography and stratigraphic architecture (Unpublished Ph.D. Thesis, 255p). Jadavpur University.Google Scholar
  92. Mukhopadhyay, S., Choudhuri, A., Samanta, P., Sarkar, S., & Bose, P. K. (2014). Were the hydraulic parameters of Precambrian rivers different? Journal of Asian Earth Sciences, 91, 289–297.CrossRefGoogle Scholar
  93. Olsen, H. (1988). The architecture of a sandy braided-meandering river system: An example from the lower Triassic soiling formation (M. Buntsandstein) in W-Germany. International Journal of Earth Sciences, 77(3), 797–814.Google Scholar
  94. Olsen, H. (1989). Sandstone-body structures and ephemeral stream processes in the Dinosaur Canyon Member, Moenave Formation (Lower Jurassic), Utah, U.S.A. Sedimentary Geology, 61, 207–221.CrossRefGoogle Scholar
  95. Osterkamp, W. R., & Hedman, E. R. (1982). Perennial stream flow characteristics related to channel geometry and sediment in the Missouri River Basin (37p). Professional Paper USGS 1242.Google Scholar
  96. Petts, G. E., & Amoros, C. (1996). Fluvial hydrosystems (322p). London: Chapman and Hall.Google Scholar
  97. Pfluger, F., & Seilacher, A. (1991). Flash flood conglomerates. In G. Einsele, W. Ricken, & A. Seilacher (Eds.), Cycles and events in stratigraphy (pp. 383–391). Berlin: Springer.Google Scholar
  98. Posamentier, H. W., & Allen, G. P. (1999). Siliciclastic sequence stratigraphy: Concepts and applications. SEPM Concepts in Sedimentology and Paleontology, 9, 210.Google Scholar
  99. Posamentier, H. W., & Walker, R. G. (2006). Deep-water turbidites and submarine fans. In: H. W. Posamentier & R. G. Walker (Eds.), Facies models revisited (pp. 399–520). Society for Economic geology, Palaeontology and Mineralogy (Special Publication 84).CrossRefGoogle Scholar
  100. Radhakrishna, B. P., & Vaidyanadhan, R. (1997). Geology of Karnataka (353p). Bangalore: Geological Society of India.Google Scholar
  101. Raha, P. K., & Sastry, M. V. A. (1982). Stromatolites and Precambrian Stratigraphy in India. Precambrian Research, 18, 293–318.CrossRefGoogle Scholar
  102. Rainbird, R. H. (1992). Anatomy of a large-scale braid-plain quartzarenite from the Neoproterozoic Shaler Group, Victoria Island, Northwest Territories, Canada. Canadian Journal of Earth Sciences, 29, 2537–2550.CrossRefGoogle Scholar
  103. Reading, H. G. (1986). Sedimentary environments and facies (2nd Ed., 524p). Oxford: Blackwell.Google Scholar
  104. Reading, H. G. (1996). Sedimentary environments: Processes, facies and stratigraphy (688p). Oxford: Blackwell Science.Google Scholar
  105. Rogers, J. J. W. (1993). India and Ur. Journal of Geological Socirty of India, 42, 217–222.Google Scholar
  106. Rygel, M. C., & Gibling, M. R. (2006). Natural geomorphic variability recorded in a high-accommodation setting: Fluvial architecture of the Pennsylvanian Joggins Formation of Atlantic Canada. Journal of Sedimentary Research, 76, 1230–1251.CrossRefGoogle Scholar
  107. Sambrook Smith, G. H., Best, J. L, Bristow, C. S, & Petts, G. E. (2006). Braided rivers: Process, deposits, ecology and management (396p). Oxford: Blackwell.Google Scholar
  108. Sarkar, S., Mazumder, R., & Bose, P. K. (1999). Changed bedform dynamics: Some observations from Proterozoic Chaibasa formation, India. Journal of Indian Association of Sedimentologists, 18, 31–40.Google Scholar
  109. Sarkar, S., Samanta, P., Mukhopadhyay, S., & Bose, P. K. (2012). Stratigraphic architecture of the Sonia Fluvial interval, India in its Precambrian context. Precambrian Research, 214–215, 210–226.CrossRefGoogle Scholar
  110. Sathyanarayana, S. (1994). The Younger Proterozoic Badami Group, northern Karnataka. In Geo-Karnataka (pp. 227–233). Mysore Geological Department Centenary..Google Scholar
  111. Schumm, S. A. (1968a). River adjustment to altered hydrologic regiment-Murrumbidgee River and palaeochannels, Australia (65p). Professional Paper UGGS 598.Google Scholar
  112. Schumm, S. A. (1968b). Speculations concerning palaeohydrologic controls of terrestrial sedimentation. Geological Society of America Bulletin, 79, 1573–1588.CrossRefGoogle Scholar
  113. Schumm, S. A. (1969). River metamorphosis. In Proceedings of American Society of Civil Engineers (Vol. 95 (HYI), pp. 255–273). J. Hydraul. Div.Google Scholar
  114. Schumm, S. A. (1972). Fluvial palaeochannels. In J. K. Rigby & W. K. Hamblin (Eds.), Recognition of ancient sedimentary environments (Vol. 16, pp. 98–107). SEPM.CrossRefGoogle Scholar
  115. Schumm, S. A., Mosely, M. P., & Weaver, W. E. (1987). Experimental fluvial geomorphology. New York: Wiley.Google Scholar
  116. Simons, D. B., Richardson, E. V., & Nordin, C. L., Jr. (1965). Sedimentary structures generated by flow in alluvial channels. In G. V. Middelton (Ed.), Primary sedimentary structures and their hydrodynamic interpretation (Vol. 12, pp. 84–115). Society of Economic Paleontologists (Special Publication).CrossRefGoogle Scholar
  117. Singh, H., Parkash, B., & Gohain, K. (1993). Facies analysis of the Kosi megafan deposits. Sedimentary Geology, 85(1–4), 87–113.CrossRefGoogle Scholar
  118. Smith, N. D. (1970). The braided stream depositional environment: Comparison of the Platte River with some Silurian clastic rocks, North Central Appalachians. Geological Society of America Bulletin, 81, 2993–3014.CrossRefGoogle Scholar
  119. Smith, N. D., & Rogers, J. (1999). Fluvial sedimentology (VI ed., p. 478). Oxford: Blackwell Sciences.CrossRefGoogle Scholar
  120. Sønderholm, M., & Tirsgaard, H. (1998). Proterozoic fluvial styles: Response to base-level changes and climate (Riveradal sandstones, eastern North Greenland). Sedimentary Geology, 120, 257–274.CrossRefGoogle Scholar
  121. Suter, J. R., & Clifton, H. E. (1999). The Shannon Sandstone and isolated linear sand bodies: Interpretations and realizations. In K. M., Bergman & J. W. Snedden (Eds.), Isolated shallow marine sand bodies: Sequence stratigraphic analysis and sedimentological interpretation (Vol. 64, pp. 321–356). Society of Economic Paleontologists.CrossRefGoogle Scholar
  122. Tirsgaard, H., & Øxnevad, I. E. I. (1998). Preservation of pre-vegetational mixed fluvio-aeolian deposits in a humid climatic setting: An example from the Middle Proterozoic Eriksfjord Formation, Southwest Greenland. Sedimentary Geology, 120(1–4), 295–317.CrossRefGoogle Scholar
  123. Van der Nuet, M., & Eriksson, P. G. (1999). Palaeohydrolical parameters of a Proterozoic braided fluvial system (Wilgerivier Formation, Waterberg, South Africa) compared with a Phanerozoic example. International Association of Sedimentologists, 28, 381–392.Google Scholar
  124. Van Wagoner, J. C. (1995). Overview of sequence Stratigraphy of foreland basin deposits. In J. C. Van Wagoner & G. T. Bertram (Eds.), Sequence Stratigraphy of Foreland Basin deposits (Vol. 64, pp. 9–21). AAPG Memoir.Google Scholar
  125. Viswanathiah, M. N., & Venkatachalapathy, V. (1980). Microbiota from the Bababudan Iron Formation, Karnataka. Journal of Geological Society of India, 21, 16–20.Google Scholar
  126. Walker, R. G. (1984). Turbidites and associated coarse clastic deposits. In R. G. Walker (Ed.), Facies models (2nd ed., pp. 171–188). Toronto: Geological Association of Canada.Google Scholar
  127. Whipple, K. X., Parker, G., Paola, C., & Mohrig, D. (1998). Channel dynamics, sediment transport and the slope of alluvial fans: Experimental study. Journal of Sedimentary Research 677–693.CrossRefGoogle Scholar
  128. Williams, G. P. (1978). Bank-full discharge of rivers. Water Resources Research, 14(6), 1141–1154CrossRefGoogle Scholar
  129. Williams, G. P. (1984). Palaeohydrologic equations for rivers. In J. E. Costa & P. J. Flcisher (Eds.), Development and application of geomorphology (pp. 343–367). Berlin: Spinger.CrossRefGoogle Scholar
  130. Yalin, M. S. (1964). Geometrical properties of sand waves. In Proceedings of American Society of Civil Engineers (Vol. 90 (HY5), Part I, pp. 105–119).Google Scholar
  131. Yu, X., Ma, X., & Quing, H. (2002). Sedimentology and reservoir characteristics of a Middle Jurassic fluvial system, Datong Basin, northern China. Bulletin of Canadian Petroleum Geology, 50(1), 105–117.CrossRefGoogle Scholar
  132. Zaitlin, B. A., Potocki, D., Warren, M., Rosenthal, L., & Boyd, R. (1999). Sequence stratigraphy in low accommodation foreland basins: An example form the lower Cretaceous Basal Quartz Formation of southern Alberta. Canadian Association of Petroleum Geologist Reservoir, 26, 12–13.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Soumik Mukhopadhyay
    • 1
    Email author
  • Pradip Samanta
    • 2
    • 3
  • Sinchan Bhattacharya
    • 1
  • Subir Sarkar
    • 1
  1. 1.Department of Geological SciencesJadavpur UniversityKolkataIndia
  2. 2.Department of GeologyDurgapur Government CollegeDurgapurIndia
  3. 3.Department of GeologyUniversity of North BengalDarjeelingIndia

Personalised recommendations