Advertisement

Mineral Chemistry, Sr–Nd Isotope Geochemistry and Petrogenesis of the Granites of Bathani Volcano-Sedimentary Sequence from the Northern Fringe of Chotanagpur Granite Gneiss Complex of Eastern India

  • Ashima SaikiaEmail author
  • Bibhuti Gogoi
  • Mansoor Ahmad
  • Rajeev Kumar
  • Tatiana Kaulina
  • Tamara Bayanova
Chapter
Part of the Society of Earth Scientists Series book series (SESS)

Abstract

New geochemical, mineral chemical, Sr–Nd isotope data of the granites from Bathani Volcano Sedimentary sequence (BVSs) from northern margin of Chotanagpur Granite Gneiss Complex of Central Indian Tectonic Zone has been presented in this paper to understand its petrogenesis and implications for crustal growth in the eastern Indian shield. Petrographically, they are coarse-grained granites with biotite, plagioclase feldspar and K-feldspar as major constituent phases with minor presence of muscovite. Granites are silica rich (62.42–71.08 wt%), high-K, calc-alkaline and peraluminous in nature. Trace element wise they show an overall enriched large ion lithophile elements (LILE) pattern with negative anomalies for Ba, Nb, Sr, P, Eu, Ti and Zr. They are characterized by fractionated REE patterns with enrichments in LREE relative to HREE and display pronounced negative Eu anomalies. The granites presents a lower (143Nd/144Nd)i values varying from 0.51130 to 0.51164 with εNd(t) values varying from 2.21 to −4.96 and low (87Sr/86Sr)i (0.705–0.711) and relatively old depleted mantle model age of TDM1 1886–2517 Ma. The emplacement age of the BVSs granites took place at ~1600 Ma as revealed by whole rock Rb–Sr isochron age. Interpretation of the observed data indicates that they are I-type granite related to arc magmatism and is the product of partial melting of a pre-existing metabasic crust due to heat generated by an underplating basaltic magma pool coupled with extensive fractional crystallization of plagioclase, biotite and K-feldspar during emplacement.

Keywords

Chotanagpur gneissic complex Bathani volcano sedimentary sequence Granites Sr-Nd isotopes Rb-Sr geochronology Mineral chemistry Crustal growth 

Notes

Acknowledgements

Ashima Saikia acknowledges the CSIR grant vide Project no. 24(0317)/12/EMR-II and DST grant vide DST No: INT/RFBR/P-112/2011 for carrying out this work. Tatiana Kaulina acknowledges support by the RFBR grant (11-05-92704).

References

  1. Abdel-Rahman, A. F. M. (1994). Nature of biotites from alkaline, calcalkaline and peraluminous magmas. Journal of Petrology, 35, 525–541.CrossRefGoogle Scholar
  2. Acharyya, S. K. (2003). The nature of Mesoproterozoic central Indian tectonic zone with exhumed and reworked older granulites. Gondwana Research, 6(2), 197–214.CrossRefGoogle Scholar
  3. Ahmad, M., & Dubey, J. (2011). Report on prospecting for gold and silver mineralization in Munger Rajgir Group of rocks in Nalanda District, Bihar. Geological Survey of India (F.S.: 2008-09, 2009-10, 2011-12) (Unpublished report).Google Scholar
  4. Ahmad, M., & Paul, A. Q. (2013). Investigation of volcano-sedimentary sequence and associated rocks to identify gold and base metal mineralization at Gere-Kewti area of Gaya District, Bihar (G4). Geological Survey of India (F.S.: 2012–13) (Unpublished report).Google Scholar
  5. Ahmad, M., & Wanjari, N. (2009). Volcano-sedimentary sequence in the Munger-Rajgir metasedimentary belt, Gaya district, Bihar. Indian Journal of Geoscience, 63(4), 351–360.Google Scholar
  6. Bachl, C. A., Miller, C. F., Miller, J. S., & Faulds, J. E. (2001). Construction of a pluton: Evidence from an exposed cross section of the Searchlight pluton, Eldorado Mountains, Nevada. Geological Society of America Bulletin, 113, 1213–1228.CrossRefGoogle Scholar
  7. Baidya, T. K., Maity, N., & Biswas, P. (1989). Tectonic phases and crustal evolution in a part of the Eastern Chotanagpur Gneissic Complex. Journal Geological Society of India, 34(3), 318–324.Google Scholar
  8. Balaram, V., Saxena, V. K., Manikyamba, C., & Ramesh, S. L. (1990). Determination of rare earth elements in Japanese rock standards by inductively coupled plasma mass spectrometry. Atomic Spectroscopy, 11(1), 19–23.Google Scholar
  9. Bhandari, A., Pant, N. C., Bhowmik, S. K., & Goswami, S. (2011). 1.6 Ga ultrahigh-temperature granulite metamorphism in the Central Indian Tectonic Zone: Insights from metamorphic reaction history, geothermobarometry and monazite chemical ages. Geological Journal, 46, 198–216.CrossRefGoogle Scholar
  10. Bhowmik, S. K., Wilde, S. A., & Bhandari, A. (2011). Zircon U–Pb/Lu–Hf and monazite chemical dating of the tirodi biotite gneiss: Implication for Latest Paleoproterozoic to Early Mesoproterozoic Orogenesis in the Central Indian Tectonic Zone. Geological Journal, 46, 574–596.CrossRefGoogle Scholar
  11. Bhowmik, S. K., Wilde, S. A., Bhandari, A., Pal, T., & Pant, N. C. (2012). Growth of the Greater Indian landmass and its assembly in Rodinia: Geochronological evidence from the Central Indian Tectonic Zone. Gondwana Research, 22, 54–72.CrossRefGoogle Scholar
  12. Bora, S., Kumar, S., Yi, K., Kim, N., & Lee, T. H. (2013). Geochemistry and U–Pb SHRIMP zircon chronology of granitoids and microgranular enclaves from Jhirgadandi pluton of Mahakoshal Belt, Central India Tectonic Zone, India. Journal of Asian Earth Sciences, 70–71, 99–114.CrossRefGoogle Scholar
  13. Boyton, W. V. (1984). Cosmochemistry of the rare earth elements: Meteorite studies. In P. Henderson (Ed.), Rare earth element geochemistry (pp. 63–114). Amsterdam: Elsevier.CrossRefGoogle Scholar
  14. Chappell, B. W. (1999). Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos, 46, 535–551.CrossRefGoogle Scholar
  15. Chappell, B. W., & White, A. J. R. (1992). I- and S- type granites in Lachlan Fold Belt. Transactions Royal Society Edinburgh, 83, 1–26.CrossRefGoogle Scholar
  16. Chatterjee, N., Banerjee, M., Bhattacharya, A., & Maji, A. K. (2010). Monazite chronology, metamorphism-anatexis and tectonic relevance of the mid-Neoproterozoic Eastern Indian Tectonic Zone. Precambrian Research, 179, 99–120.CrossRefGoogle Scholar
  17. Chatterjee, N., Crowley, J. I., & Ghose, N. C. (2008). Geochronology of the 1.55 Ga Bengal anorthosite and Grenvillian metamorphism in the Chotanagpur Gneissic complex, eastern India. Precambrian Research, 161, 303–316.CrossRefGoogle Scholar
  18. Chatterjee, N., & Ghose, N. C. (2011). Extensive Early Neoproterozoic high-grade metamorphism in North Chotanagpur Gneissic Complex of the Central Indian Tectonic Zone. Gondwana Research, 20, 362–379.CrossRefGoogle Scholar
  19. Chattopadhyay, A., & Khasdeo, L. (2011). Structural evolution of Gavilgarh-Tan Shear Zone, central India: A possible case of partitioned transpression during Mesoproterozoic oblique collision within Central Indian Tectonic Zone. Precambrian Research, 186, 70–88.CrossRefGoogle Scholar
  20. Das, B. (1967). On the lithological sequence and overall structure of the rocks around Rajgir, Bihar. Bulletin of Geological Society of India, 4(2), 46–49.Google Scholar
  21. Deer W.A., Howie, R. A., & Zussman, J. (1992). An introduction to the rock forming minerals (696p). London: ELBS Publication.Google Scholar
  22. Defant, M. J., & Drummond, M. S. (1990). Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347, 662–665.CrossRefGoogle Scholar
  23. Dhurandhar, A. P., Latha, A., & Krishna, V. (2005). Geochronology and petrochemistry of the Dubha granite, Sonbhadra district, Uttar Pradesh. Journal Geological Society of India, 65, 459–467.Google Scholar
  24. Faure, G. (2001). Origin of igneous rocks (pp. 1–117). Berlin: Springer.Google Scholar
  25. Ghose, N. C., & Mukherjee, D. (2000). Chotanagpur gneiss–granulite complex, Eastern India-a kaleidoscope of global events. In A. N. Trivedi, B. C. Sarkar, N. C. Ghose, & Y. R. Dhar (Eds.), Geology and mineral resources of Bihar and Jharkhand (pp. 33–58). Patna: Institute of Geoexploration and Environment (Platinum Jubilee Commemoration Volume, Indian School of Mines, Dhanbad, Monograph 2).Google Scholar
  26. GSI. (1998). Geological map of India (7th Ed.). Geological Survey of India.Google Scholar
  27. GSI. (2000). Eastern Nepal Himalaya and Indo-Gangetic Plains of Bihar. In P. L. Narula, S. K. Acharyya, & J. Banerjee (Eds.), Seismotectonics atlas of India and its environs (pp. 26–27). Geological Survey of India.Google Scholar
  28. Irvine, T. N., & Baragar, W. R. A. (1971). A guide to the geochemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8, 523–548.CrossRefGoogle Scholar
  29. Jahn, B. M., Zhou, X. H., & Li, J. L. (1990). Formation and tectonic evolution of southeastern China and Taiwan: Isotopic and geochemical constraints. Tectonophysics, 183, 145–160.CrossRefGoogle Scholar
  30. Jain, S. C., Yedekar, D. B., & Nair, K. K. K. (1991). Central Indian shear zone: A major Precambrian crustal boundary. Journal Geological Society of India, 37, 521–532.Google Scholar
  31. Karmakar, S., Bose, S., Basu Sarbadhikari, A., & Das, K. (2011). Evolution of granulite enclaves and associated gneisses from Purulia, Chhotanagpur Granite Gneiss Complex, India: Evidence for 990-940 Ma tectonothermal event(s) at the eastern India cratonic fringe zone. Journal of Asian Earth Sciences, 41(1), 69–88.CrossRefGoogle Scholar
  32. LeMaitre, R. W., Bateman, P., Dudek, A., Keller, J., Lameyre, J., Le Bas, M. J., et al. (1989). A classification of igneous rocks and glossary of terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Oxford: Blackwell Scientific Publications.Google Scholar
  33. Ludwig, K. R. (2008). Isoplot/Ex, version 3.6 (Vol. 4). Berkeley Geochronology Center, Special Publication.Google Scholar
  34. Mahato, S., Goon, S., Bhattacharya, A., Mishra, B., & Bernhardt, H. J. (2008). Thermo-tectonic evolution of the North Singhbhum Mobile Belt: A view from the western part of the belt. Precambrian Research, 162, 102–107.CrossRefGoogle Scholar
  35. Maji, A. K., Goon, S., Bhattacharya, A., Mishra, B., Mahato, S., & Bernhardt, H. J. (2008). Proterozoic polyphase metamorphism in the Chotanagpur Gneiss Complex (India), and implications for trans-continental Gondwana correlation. Precambrian Research, 162, 385–402.CrossRefGoogle Scholar
  36. Maniar, P. D., & Piccoli, P. M. (1989). Tectonic discrimination of granitoids. GSA Bulletin, 101, 635–643.CrossRefGoogle Scholar
  37. Mazumdar, S. K. (1988). Crustal evolution of the Chhotanagpur gneissic complex and the mica belt of Bihar. In D. Mukhopadhyay (Ed.), Precambrian of the Eastern Indian shield (Vol. 8, pp. 49–83). Geological Survey of India Memoir.Google Scholar
  38. Mishra, D. C., Singh, B., Tiwari, V. M., Gupta, S. B., & Rao, M. B. S. V. (2000). Two cases of continental collision and related tectonics during the Proterozoic period in India: Insight from gravity modelling constrained by seismic and magnetotelluric studies. Precambrian Research, 99, 149–169.CrossRefGoogle Scholar
  39. Mohanty, S. (2010). Tectonic evolution of the Satpura Mountain Belt: A critical evaluation and implication on supercontinent assembly. Journal of Asian Earth Sciences, 39, 516–526.CrossRefGoogle Scholar
  40. Mukherjee, D., & Ghose, N. C. (1998). Conglomerate at the base of Bihar Mica Belt metasediments, Koderma district, Bihar and its stratigraphic significance. In National Seminar on Advancement of Geological Sciences in Bihar (pp. 15–16). Patna: Geological Survey of India.Google Scholar
  41. Naganjaneyulu, K., & Santosh, M. (2010). The Central India Tectonic Zone: A geophysical perspective on continental amalgamation along a Mesoproterozoic suture. Gondwana Research, 18, 547–564.CrossRefGoogle Scholar
  42. Pearce, J. A., Harris, B. W., & Tindle, A. G. (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956–983.CrossRefGoogle Scholar
  43. Pearce J. A. (1996). Sources and settings of granitic rocks. Episodes, 19, 120–125.Google Scholar
  44. Peccerillo, A., & Taylor, S. R. (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58, 63–81.CrossRefGoogle Scholar
  45. Pouchou, J. L., & Pichoir, F. (1987). Basic expressions of PAP computation for quantitative EPMA. In Proceedings of ICXOM 11, Ontario (pp. 249–253).Google Scholar
  46. Radhakrishna, B. P. (1989). Suspect tectono-stratigraphic terrane elements in the Indian subcontinent. Journal Geological Society of India, 34, 1–24.Google Scholar
  47. Rao, M. B. R. (1973). The subsurface geology of the Indo-Gangetic plains. Journal Geological Society of India, 14(3), 217–242.Google Scholar
  48. Rathore, S. S., Kumar, R., Uniyal, G. C., & Bansal, M. (2013). Establishment of Sm–Nd dating technique at KDMIPE, ONGC, Dehradun. In Proceedings of 12th ISMAS Conference, Goa (pp. 183–189). March 8–13, 2013.Google Scholar
  49. Ray Barman, T., Bishul, P. K., Mukhopadhyay, K., & Ray, J. N. (1994). Rb–Sr geochronology of the high grade rocks from Puruliya, West Bengal and Jamua-Dumka sector, Bihar. Indian Minerals, 48(1–2), 45–60.Google Scholar
  50. Rekha, S., Upadhyay, D., Bhattacharya, A., Kooijman, E., Goon, S., Mahato, S., et al. (2011). Lithostructural and chronological constraints for tectonic restoration of Proterozoic accretion in the eastern Indian Precambrian shield. Precambrian Research, 187, 313–333.CrossRefGoogle Scholar
  51. Roy, A., & Devarajan, M. K. (2000). A reappraisal of the stratigraphy and tectonics of the Palaeoproterozoic Mahakoshal supracrustal belt, Central India. In Proceedings of the International Seminar on Precambrian Crust in Eastern and Central India (Vol. 57, pp. 79–97). Geological Survey of India Special Publication (UNESCO-IUGS-IGCP 368).Google Scholar
  52. Roy, A., Kagami, H., Yoshida, M., Roy, A., Bandyopadhyay, B. K., Chattopadhyay, A., et al. (2006). Rb–Sr and Sm–Nd dating of different metamorphic events from the Sausar Mobile Belt, central India: Implications for Proterozoic crustal evolution. Journal of Asian Earth Sciences, 26, 61–76.CrossRefGoogle Scholar
  53. Roy, A., & Prasad, H. (2003). Tectonothermal events in Central Indian Tectonic Zone (CITZ) and its implications in Rodinian crustal assembly. Journal of Asian Earth Sciences, 22, 115–129.CrossRefGoogle Scholar
  54. Rudnick, R. L., & Fountain, D. M. (1995). Nature and composition of the continental crust: A lower crustal perspective. Reviews of Geophysics, 33, 267–309.CrossRefGoogle Scholar
  55. Saikia, A., Gogoi, B., Kaulina, T., Lialina, L., Tamara Bayanova, T., & Ahmad, M. (2017). Geochemical and U–Pb zircon age characterization of granites of the Bathani Volcano Sedimentary sequence, Chotanagpur Granite Gneiss Complex, eastern India: Vestiges of the Nuna supercontinent in Central Indian Tectonic Zone. In: N. C. Pant & S. Dasgupta (Eds.), Crustal evolution of India and Antarctica: The supercontinent connection (Vol. 457). London: Geological Society of London, Special Publications, 457.  https://doi.org/10.1144/SP457.11.
  56. Sanyal, S., & Sengupta, P. (2012). Metamorphic evolution of the Chotangapur Granite Gneiss Complex of the East Indian Shield: Current status. In R. Mazumder & D. Saha (Eds.), Paleoproterozoic of India (Vol. 365, pp. 117–145). London: Geological Society of London, Special Publication.CrossRefGoogle Scholar
  57. Sarkar, A., Boda, M. S., Kundu, H. K., Mamgain, V. D., & Shankar, R. (1998). Geochronology and geochemistry of Mesoproterozoic intrusive plutonites from the eastern segment of the Mahakoshal greenstone belt, Central India. In International Seminar on Precambrian Crust in Eastern and Central India (pp. 82–85). Abstract Volume, UNESCO-IUGS-IGCP-368.Google Scholar
  58. Sastri, V. V., Bhandari, L. L., Raju, A. T. R., & Dutta, A. K. (1971). Tectonic framework and subsurface stratigraphy of the Ganga basin. Journal Geological Society of India, 12, 222–233.Google Scholar
  59. Sen, S. (1956). Structure of porphyritic granite and associated metamorphic rocks of East Manbhum, Bihar, India. Geological Society of America Bulletin, 67, 647–670.CrossRefGoogle Scholar
  60. Shand, S. J. (1943). Eruptive rocks. Their genesis, composition, classification, and their relation to ore deposits (3rd Ed., p. 488). New York: Wiley.Google Scholar
  61. Singh, Y., & Krishna, V. (2009). Rb–Sr geochronology and petrogenesis of granitoids from the Chotanagpur Granite Gneiss Complex of Raikera-Kunkuri region, Central India. Journal of the Geological Society of India, 74, 200–208.CrossRefGoogle Scholar
  62. Soler, P., & Rotach-Toulhoat, N. (1990). Sr–Nd isotope compositions of Cenozoic granitoids along a traverse of the central Peruvian Andes. Geological Journal, 25, 351–358.CrossRefGoogle Scholar
  63. Stein, H., Hannah, J., Zimmerman, A., & Markey, R. (2006). Mineralization and deformationof the Malanjkhand terrane (2490–2440 Ma) along the southern margin of the Central Indian Tectonic Zone. Mineralium Deposita, 40, 755–765.CrossRefGoogle Scholar
  64. Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: A. D. Saunders & M. J. Norry (Eds.), Magmatism in ocean basins (Vol. 42, pp. 313–345). London: Geological Society of London Special Publications.CrossRefGoogle Scholar
  65. Sylvester, P. J. (1989). Post-collisional alkaline granites. Journal of Geology, 97, 261–280.CrossRefGoogle Scholar
  66. Tatsumi, Y., & Eggins, S. (1995) Subduction zone magmatism (211pp). Cambridge: Blackwell.Google Scholar
  67. Valdiya, K. S. (1976). Himalayan transverse faults and folds and their parallelism with subsurface structures of the northern Indian Plains. Tectonophysics, 32, 353–386.CrossRefGoogle Scholar
  68. Wani, H., & Mondal, M. E. A. (2016). Geochemical evidence for Paleoproterozoic arc-Back arc basin association and its importance in understanding the evolution of the Central Indian Tectonic Zone. Tectonophysics, 690, 318–335.CrossRefGoogle Scholar
  69. Whalen, J. B., Currie, K. L., & Chappell, B. W. (1987). A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95, 407–419.CrossRefGoogle Scholar
  70. Wilson, M. (1989). Igneous petrogenesis. London: Chapman and Hall.CrossRefGoogle Scholar
  71. Yadav, B., Ahmad, T., Kaulina, T., & Bayanova, T. (2015). Geochemistry and petrogenesis of Paleo-Proterozoic granitoids from Mahakoshal Supracrustal Belt (MSB). CITZ. Geophysical Research Abstracts, 17, EGU2015-5256.Google Scholar
  72. Yedekar, D. B., Jain, S. C., Nair, K. K. K., & Dutta, K. K. (1990). The Central Indian collision suture. Precambrian of Central India. Geological Survey of India Special Publication, 28, 1–37.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Ashima Saikia
    • 1
    Email author
  • Bibhuti Gogoi
    • 1
  • Mansoor Ahmad
    • 2
  • Rajeev Kumar
    • 3
  • Tatiana Kaulina
    • 4
  • Tamara Bayanova
    • 4
  1. 1.Department of GeologyUniversity of DelhiDelhiIndia
  2. 2.Rajabazar, PatnaIndia
  3. 3.KDMIPE, Oil and Natural Gas CorporationDehradunIndia
  4. 4.Geological Institute, Kola Science Centre of Russian Academy of SciencesApatityRussia

Personalised recommendations