Advertisement

Redox State of Atmosphere and Ocean at the Archaean-Palaeoproterozoic Boundary: A Case Study from the Sausar Belt, Central India

  • S. MohantyEmail author
Chapter
Part of the Society of Earth Scientists Series book series (SESS)

Abstract

The Sausar belt on the southern flank of the Satpura Mountain Belt of Central India comprises several generations of granite gneisses and migmatites, and the metasedimentary rocks of the Sausar Group. A suite of ~3200–2450 Ma old rocks comprising of an older Tonalite-Trondhjemite-Granodiorite (TTG) gneiss and younger quartz-monzonite plutons (Tirodi Gneiss—I) constitutes the basement complex for the Sausar Group. The contact of Tirodi Gneiss—I and the Sausar Group records the geological history at Archaean–Palaeoproterozoic boundary. A paleosol horizon at this contact contains unusual minerals such as siderite, ankerite, uraninite, and alumino-silicate minerals. The geochemical data of the paleosol indicate a reducing environment of formation and oxygen deficient conditions in the atmosphere at the time of development of this paleosol at the Archaean–Palaeoproterozoic boundary. The Sausar Group is reported to contain coarse clastics, volcanics, glaciogenic sediments, cap carbonates, and fine clastics with manganese ore deposits. Geochemical data from the cap carbonate horizon above the glaciogenic unit and manganese bearing horizons above the cap carbonate confirm presence of reducing environment in the shallow ocean.

Keywords

Great oxidation event Palaeoproterozoic glaciation Anoxic weathering Paleosol Proterozoic ocean chemistry Manganese ore deposits 

References

  1. Acharyya, S. K. (2003). The nature of Mesoproterozoic Central Indian Tectonic Zone with exhumed and reworked older granulites. Gondwana Research, 6, 197–214.CrossRefGoogle Scholar
  2. Acharyya, S. K., & Roy, A. (2000). Tectonothermal history of the Central Indian Tectonic Zone and reactivation of major faults/shear zones. Journal Geological Society of India, 55, 239–256.Google Scholar
  3. Agrawal, V. N. (1974). Tectonics of the manganese ore bodies associated with Sausar Group, Nagpur district, Maharashtra, India. Proceedings of Indian National Science Academy, 40-A, 101–111.Google Scholar
  4. Agrawal, V. N. (1975). Fold interference patterns in the Sausar Group, northern Nagpur district, Maharashtra, India. Journal of Geological Society of India, 16, 176–187.Google Scholar
  5. Ahmad, T., Kaulina, T. V., Wanjari, N., Mishra, M. K., & Nitkina, E. A. (2009). U–Pb zircon chronology and Sm–Nd isotopic characteristics of the Amgaon and Tirodi Gneissic Complex, Central Indian Shield: constraints on Precambrian crustal evolution. In V. K. Singh & R. Chandra (Eds.), Precambrian continental growth and tectonism (pp. 137–138). New Delhi: Excel India Publishers.Google Scholar
  6. Alibo, D. S., & Nozaki, Y. (1999). Rare earth elements in seawater: Particle association, shale-normalization, and Ce oxidation. Geochimica et Cosmochimica Acta, 63, 363–372.CrossRefGoogle Scholar
  7. Balaram, V., & Rao, T. G. (2003). Rapid determination of REEs and other trace elements in geological samples by microwave acid digestion and ICP-MS. Atomic Spectroscopy, 24, 206–212.Google Scholar
  8. Basu, N. K., & Sarkar, S. N. (1966). Stratigraphy and structure of the Sausar Series in the Mahuli-Ramtek-Junawani area, Nagpur district, Maharashtra. Quarterly Journal of the Geological, Mining and Metallurgical Society of India, 38, 77–105.Google Scholar
  9. Bau, M., & Dulski, P. (1996). Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Research, 79, 37–55.CrossRefGoogle Scholar
  10. Bekker, A., Holland, H. D., Wang, P., Rumble, L. D., III, Stein, H. J., Hannah, J. L., et al. (2004). Dating the rise of atmospheric oxygen. Nature, 427, 117–120.CrossRefGoogle Scholar
  11. Bekker, A., Kaufman, A. J., Karhu, J. A., & Eriksson, K. A. (2005). Evidence for Paleoproterozoic cap carbonates in North America. Precambrian Research, 137, 167–206.CrossRefGoogle Scholar
  12. Bhowmik, S. K., Pal, T., Pant, N. C., & Shome, S. (2000). Implication of Ramakona cordierite gneiss in the crustal evolution of Sausar Mobile Belt in central India. Geological Survey of India, 57, 131–150.Google Scholar
  13. Bhowmik, S. K., Pal, T., Roy, A., & Pant, N. C. (1999). Evidence for Pre-Grenvillian high-pressure granulite metamorphism from the northern margin of the Sausar mobile belt in Central India. Journal Geological Society of India, 53, 385–399.Google Scholar
  14. Bhowmik, S. K., Sarbadhikari, A. B., Spiering, B., & Raith, M. (2005). Mesoproterozoic reworking of Palaeoproterozoic ultrahigh-temperature granulites in the Central Indian Tectonic Zone and its implications. Journal of Petrology, 46, 1085–1119.CrossRefGoogle Scholar
  15. Bhowmik, S. K., Wilde, S. A., & Bhandari, A. (2011). Zircon U-Pb/Lu–Hf and monazite chemical dating of the Tirodi biotite gneiss: implication for latest Palaeoproterozoic to Early Mesoproterozoic orogenesis in the Central Indian Tectonic Zone. Geological Journal, 46, 574–596.CrossRefGoogle Scholar
  16. Blanford, W. T. (1872). Description of the geology of Nagpur, and its neighbourhood. Memoirs of the Geological Survey of India, 9, 295–330.Google Scholar
  17. Cloud, P. E., Jr. (1965). Significance of the Gunflint (Precambrian) Microflora: Photosynthetic oxygen may have had important local effects before becoming a major atmospheric gas. Science, 148(3666), 27–35.CrossRefGoogle Scholar
  18. Datta, P. N. (1906). Notes on the geology of parts of the valley of the Kanhan river in the Nagpur and Chhindwara districts, Central Provinces. Records of Geological Survey of India, 33(3), 221–228.Google Scholar
  19. Fermor, L. L. (1906). Notes on the petrology and manganese-ore deposits of the Sausar Tahsil, Chhindwara district, Central Provinces. Records of Geological Survey of India, 33, 159–220.Google Scholar
  20. Fedo, C. M., Nesbitt, H. W., & Young, G. M. (1995). Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23, 921–924.CrossRefGoogle Scholar
  21. Fermor, L. L. (1909). The manganese-ore deposits of India. Memoirs of the Geological Survey of India, 37, 1–610.Google Scholar
  22. Fermor, L. L. (1931). General report of the Geological Survey of India for the year 1930. Records of Geological Survey of India, 65, 1–160.Google Scholar
  23. Fischer, A. G. (1965). Fossils, early life, and atmospheric history. In NAS symposium on the evolution of the Earth’s atmosphere. Proceedings of National Academy of Science, USA, 53, 1205–1215.Google Scholar
  24. Frei, R., Gaucher, C., Poulton, S. W., & Canfield, D. E. (2009). Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature, 461, 250–253.CrossRefGoogle Scholar
  25. Ghosh, J. G. (2004). 3.56 Ga tonalite in the central part of the Bastar craton, India: Oldest Indian date. Journal of Asian Earth Sciences, 23, 359–364.CrossRefGoogle Scholar
  26. Guo, Q., Strauss, H., Kaufman, A. J., Schröder, S., Gutzmer, J., Wing, B., et al. (2009). Reconstructing Earth’s surface oxidation across the Archean-Proterozoic transition. Geology, 37, 399–402.CrossRefGoogle Scholar
  27. Harnois, L. (1988). The CIW index: A new chemical index of weathering. Sedimentary Geology, 55, 319–322.CrossRefGoogle Scholar
  28. Hayden, H. H. (1920). General report of the Geological Survey of India for the year 1919. Records of Geological Survey of India, 51, 1–27.Google Scholar
  29. Hoffman, P. F., Kaufman, A. J., Halverson, G. P., & Schrag, D. P. (1998). A Neoproterozoic snowball earth. Science, 281(5381), 1342–1346.CrossRefGoogle Scholar
  30. Hoffman, P. F., & Schrag, D. P. (2002). The snowball Earth hypothesis: Testing the limits of global change. Terra Nova, 14, 129–155.CrossRefGoogle Scholar
  31. Holland, H. D. (2002). Volcanic gases, black smokers, and the Great Oxidation Event. Geochimica et Cosmochimica Acta, 66, 3811–3826.CrossRefGoogle Scholar
  32. Holland, H. D. (2004). The geologic history of seawater. In H. Elderfield (Ed.), The oceans and marine geochemistry. Treatise on geochemistry (Vol. 6, pp. 583–625). Oxford: Elsevier-Pergamon.Google Scholar
  33. Holland, H. D. (2006). The oxygenation of the atmosphere and oceans. Philosophical Transactions of the Royal Society, B361, 903–915.CrossRefGoogle Scholar
  34. Holland, H. D. (2009). Why the atmosphere became oxygenated: A proposal. Geochimica et Cosmochimica Acta, 73, 5241–5255.CrossRefGoogle Scholar
  35. Holmes, A. (1955). Dating the Precambrian of Peninsular India and Ceylon. Proceedings of Geologists Association, 7, 81–106.Google Scholar
  36. Kawabe, I., Komatsu, M., Mizuno, A., Sakakibara, M., Takeshita, T., Adachi, M., et al. (1994). Chemical characteristics of sedimentary rocks and meta-sedimentary rocks of tectonic belts in Japanese islands and geological environments of their formations (pp. 6–93). Progress Report of the Grant-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture (Category General-A, 1991–1993).Google Scholar
  37. Kirschvink, J. L., Gaidos, E. J., Bertani, L. E., Beukes, N. J., Gutzmer, J., Maepa, L. N., et al. (2000). Paleoproterozoic snowball Earth: Extreme climatic and geochemical global change and its biological consequences. PNAS, 97, 1400–1405.CrossRefGoogle Scholar
  38. Krishnan, M. S. (1968). Geology of India and Burma (5th ed., p. 536). Chennai: Higginbothams (P) Limited.Google Scholar
  39. Mahadevan, T. M. (2013). Evolution of the Indian Continental Lithosphere: Insights from episodes of crustal evolution and geophysical models. Journal of Indian Geophysical Union, 17, 9–38.Google Scholar
  40. Meert, J. G., Pandit, M. K., Pradhan, V. R., & Kamenov, G. (2011). Preliminary report on the paleomagnetism of 1.88 Ga dykes from the Bastar and Dharwar cratons, Peninsular India. Gondwana Research, 20, 335–343.CrossRefGoogle Scholar
  41. Mohanty, S. (1988). Structural evolution of the southern part of the Sausar belt near Ramtek, Nagpur district, Maharashtra. Indian Journal of Geology, 60, 200–210.Google Scholar
  42. Mohanty, S. (1993). Stratigraphic position of the Tirodi gneiss in the Precambrian terrane of central India: evidence from the Mansar area, Nagpur district, Maharashtra. Journal Geological Society of India, 42, 55–60.Google Scholar
  43. Mohanty, S. (2002). Structural evolution of Sausar group around Parseoni, Nagpur district, Maharashtra: Its Implication for Stratigraphy. Journal of Geological Society of India, 60, 309–315.Google Scholar
  44. Mohanty, S. (2006). Evidence of Volcanism and Glaciation from the Sausar Group, Central India. Journal Geological Society of India, 68, 764–768.Google Scholar
  45. Mohanty, S. (2010). Tectonic evolution of the Satpura Mountain Belt: a critical evaluation and implication on supercontinent assembly. Journal of Asian Earth Sciences, 39, 516–526.CrossRefGoogle Scholar
  46. Mohanty, S. (2012). Spatio-temporal evolution of the Satpura Mountain Belt of India: a comparison with the Capricorn Orogen of Western Australia and implication for evolution of the supercontinent Columbia. Geoscience Frontiers, 3, 241–267.CrossRefGoogle Scholar
  47. Mohanty, S. (2015a). Precambrian continent assembly and dispersal events of South Indian and East Antarctic Shields. International Geology Review, 57(16), 1992–2027.CrossRefGoogle Scholar
  48. Mohanty, S. P. (2015b). Palaeoproterozoic supracrustals of the Bastar craton: Dongargarh Supergroup and Sausar Group. Geological Society, London, Memoirs, 43, 151–164.CrossRefGoogle Scholar
  49. Mohanty, S. P., Barik, A., Sarangi, S., & Sarkar, A. (2015). Carbon and oxygen isotope systematics of a Paleoproterozoic cap-carbonate sequence from the Sausar Group, Central India. Palaeogeography, Palaeoclimatology, Palaeoecology, 417, 195–209.CrossRefGoogle Scholar
  50. Mohanty, A. K., & Mohanty, S. (1996). Structural patterns in the Sausar Group around Mansar, Nagpur district, Maharashtra. Journal Geological Society of India, 48, 559–565.Google Scholar
  51. Mohanty, S., Mohanty, A. K., & Nayak, P. K. (2000). Structure of manganese-bearing metasedimentary rocks of the Sausar Group around Kandri, Nagpur district, Maharashtra. Journal Geological Society of India, 56, 79–87.Google Scholar
  52. Mohanty, S. P., & Nanda, S. (2016). Geochemistry of a paleosol horizon at the base of the Sausar Group, Central India: Implications on atmospheric conditions at the Archean-Paleoproterozoic boundary. Geoscience Frontiers, 7, 759–773.CrossRefGoogle Scholar
  53. Mondal, M. E. A., Hussain, M. F., & Ahmad, T. (2006). Continental growth of Bastar craton, Central Indian Shield during Precambrian via multiphase subduction and lithospheric extension/rifting: Evidence from geochemistry of gneisses, granitoids and mafic dykes. Journal of Geosciences, 49, 137–151.Google Scholar
  54. Naqvi, S. M., & Rogers, J. J. W. (1987). Precambrian geology of India (p. 223). Oxford: Oxford University Press.Google Scholar
  55. Narayanaswami, S., Chakravarty, S. C., Vemban, N. A., Shukla, K. D., Subramanyam, M. R., Venkatesh, V., et al. (1963). The geology and manganese-ore deposits of the manganese belt in Madhya Pradesh and adjoining parts of Maharashtra. Part I—General introduction. Bulletin of Geological Survey of India, A-22(I), 1–69.Google Scholar
  56. Nesbitt, H. W., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element geochemistry of lutites. Nature, 299, 715–717.CrossRefGoogle Scholar
  57. Nothdurft, L. D., Webb, G. E., & Kamber, B. S. (2004). Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, Western Australia: Confirmation of a seawater REE proxy in ancient limestones. Geochimica et Cosmochimica Acta, 68, 263–283.CrossRefGoogle Scholar
  58. Panigrahy, M. K., Misra, K. C., Bream, B., & Naik, R. K., (2002). Genesis of the granitoid affiliated copper–molybdenum mineralization at Malanjkhand central India: facts and problems, In Proceedings of the 11th Quadrennial IAGOD Symposium and Geocongress, Windhoek, Namibia (electronic extended abstract).Google Scholar
  59. Pascoe, E. H. (1921). General report of the Geological Survey of India for the year 1920. Records of Geological Survey of India, 53, 1–33.Google Scholar
  60. Pascoe, E. H. (1925). General report of the Geological Survey of India for the year 1924. Records of Geological Survey of India, 58, 1–74.Google Scholar
  61. Pascoe, E. H. (1926). General report of the Geological Survey of India for the year 1925. Records of Geological Survey of India, 59, 1–114.Google Scholar
  62. Pavlov, A. A., & Kasting, J. F. (2002). Mass-independent fractionation of sulphur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology, 2, 27–41.CrossRefGoogle Scholar
  63. Radhakrishna, B. P. (1989). Suspect tectono-stratigraphic terrane elements in the Indian sub-continent. Journal Geological Society of India, 34, 1–24.Google Scholar
  64. Radhakrishna, B. P., & Naqvi, S. M. (1986). Precambrian continental crust of India and its evolution. Journal of Geology, 94, 145–166.CrossRefGoogle Scholar
  65. Radhakrishna, B. P., & Ramakrishna, M. (1988). Archaean-Proterozoic boundary in India. Journal Geological Society of India, 32, 263–278.Google Scholar
  66. Rajesh, H. M., Mukhopadhyay, J., Beukes, N. J., Gutzmer, J., Belyanin, G. A., & Armstrong, R. A. (2009). Evidence for early Archaean granite from Bastar craton, India. Journal of Geological Society of London, 166, 193–196.CrossRefGoogle Scholar
  67. Roy, A., Kagami, H., Yoshida, M., Roy, A., Bandyopadhyay, B. K., Chattopadhyay, A., et al. (2006). Rb–Sr and Sm–Nd dating of different metamorphic events from the Sausar Mobile Belt, central India: Implication for Proterozoic crustal evolution. Journal of Asian Earth Sciences, 26, 61–76.CrossRefGoogle Scholar
  68. Roy, A., & Prasad, M. H. (2003). Tectonothermal events in Central Indian Tectonic Zone (CITZ) and its implications in Rodinian crustal assembly. Journal of Asian Earth Sciences, 22, 115–129.CrossRefGoogle Scholar
  69. Sarkar, G., & Gupta, S. N. (1990). Dating of Early Precambrian granite complex of Bastar district, Madhya Pradesh. Records of Geological Survey of India, 123(2), 31–33.Google Scholar
  70. Sarbadhikari, A. B., & Bhowmik, S. K. (2008). Constraining the metamorphic evolution of a cryptic hot Mesoproterozoic orogen in the Central Indian Tectonic Zone, using P–T pseudosection modelling of mafic intrusions and host reworked granulites. Precambrian Research, 162, 128–149.CrossRefGoogle Scholar
  71. Sarkar, G., Corfu, F., Paul, D. K., McNaughton, N. J., Gupta, S. N., & Bishui, P. K. (1993). Early Archaean crust in Bastar craton, central India – a geochemical and isotopic study. Precambrian Research, 62, 127‒137.CrossRefGoogle Scholar
  72. Sharma, R. (2010). Cratons and fold belts of India (304p). Berlin: Springer.CrossRefGoogle Scholar
  73. Shields, G., & Veizer, J. (2002) Precambrian marine carbonate isotope database: version 1.1. Geochemistry Geophysics Geosystems, 3(6), 1031.  https://doi.org/10.1029/2001gc000266.CrossRefGoogle Scholar
  74. Stein, H. J., Hannah, J. L., Pandit, M. K., Mohanty, S., Corfu, F., & Zimmerman, A. (2014). Molybdenite tricks with titanite give history of the Central Indian Tectonic Zone. Geophysical Research Abstracts, 16, EGU2014-13209.Google Scholar
  75. Straczek, J. A., Subramanyam, M. R., Narayanaswami, S., Shukla, K. D., Vemban, N. A., Chakravarty, S. C. et al. (1956). Manganese ore deposits of Madhya Pradesh, India. In: Symposium Sobre Yacimientos de Manganeso (Proceedings of 20th International Geological Congress, Mexico), Tomo IV (pp. 63–96).Google Scholar
  76. Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution (p. 312). Oxford, UK: Blackwell.Google Scholar
  77. Tostevin, R., Shields, G. A., Tarbuck, G. M., He, T., Clarkson, M. O., & Wood, R. A. (2016). Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings. Chemical Geology, 438, 146–162.CrossRefGoogle Scholar
  78. Veizer, J., Clayton, R. N., & Hinton, R. W. (1992). Geochemistry of Precambrian carbonates: IV. Early Paleoproterozoic (2.25 ± 0.25 Ga) seawater. Geochimica et Cosmochimica Acta, 56, 875–885.CrossRefGoogle Scholar
  79. Vemban, N. A., & Rao, G. V. (1959). Metamorphism in the Sausar Series in the manganese belt of Madhya Pradesh and adjacent parts of Bombay state. In Proceedings of 46th Indian Science Congress, Delhi, Part III (p. 217).Google Scholar
  80. Verma, R. K. (1991). Geodynamics of the Indian Peninsula and the Indian Plate Margin (p. 357). New Delhi: Oxford and IBH Publishing Company.Google Scholar
  81. West, W. D. (1936). Nappe structure in the Archaean rocks of the Nagpur district. Transactions of National Institute of Sciences India, 1(6), 93–102.Google Scholar
  82. West, W. D. (1962). The line of the Narbada and Son Valleys. Current Science, 31, 143–144.Google Scholar
  83. Yangjing, C., & Yongchao, Z. (1997). Geochemical characteristics and evolution of REE in the early Precambrian sediments: Evidence from the Southern margin of the North China Craton. Episodes, 20, 109–116.Google Scholar
  84. Yedekar, D. B., Jain, S. C., Nair, K. K. K., & Dutta, K. K. (1990). The Central Indian Collision suture. Geological Survey of India, Special Publication, 28, 1–43.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied GeologyIndian Institute of Technology (Indian School of Mines)DhanbadIndia

Personalised recommendations