Advertisement

Zircon U–Pb (SHRIMP) Ages of the Jahazpur Granite and Mangalwar Gneiss from the Deoli-Jahazpur Sector, Rajasthan, NW India: A Preliminary Reappraisal of Stratigraphic Correlation and Implications to Crustal Growth

  • Bidisha Dey
  • Kaushik DasEmail author
  • Nilanjan Dasgupta
  • Sankar Bose
  • Hiroshi Hidaka
  • Hindol Ghatak
Chapter
Part of the Society of Earth Scientists Series book series (SESS)

Abstract

We present high precision geochronological data from the Jahazpur granite and the associated Mangalwar gneiss from Deoli-Jahazpur-Hindoli region of the Aravalli Craton, northwestern India. These data are useful to understand the stratigraphic correlation between the basement gneiss and the low-grade supracrustal rocks of the Hindoli-Jahazpur Group. U–Pb (SHRIMP-IIe) data from zircon suggest emplacement age of 2538 ± 5 Ma for the Jahazpur granite, whereas a similar age of 2520 ± 37 Ma is the timing of the high-grade metamorphism and anatexis of the Mangalwar gneiss. Combining these with whole rock geochemical data, we argue that the Neoarchean Jahazpur granite underwent crustal contamination and emplaced at the same time frame of the Berach granite. Concomitant metamorphism and granitic magmatism imply that overlying Hindoli-Jahazpur Group is younger than c. 2520 Ma. Thus, the Neoarchean Jahazpur granite and Mangalwar gneiss are constituents of the Banded Gneissic Complex which forms the basement of the Hindoli-Jahazpur supracrustal sequence.

Keywords

Jahazpur granite Mangalwar gneiss SHRIMP Zircon U–Pb age Aravalli craton 

Notes

Acknowledgements

This geochronological study was carried out as a part of the JST Global Sakura student exchange program between Hiroshima University and Presidency University (December 2–23, 2015) in which BD received financial support to work with SHRIMP facility at the Hiroshima University. We thank M. E. A. Mondal for editorial handling and two anonymous reviewers for their constructive comments on the manuscript. SB and ND received financial support for fieldwork from the UGC CAS-II grant to Department of Geology, Presidency University.

References

  1. Basak, K., & Sengupta, S. (2012). Geochronological constraints on the Stratigraphic Status of the Volcano Sedimentary rocks of Hindoli and Jahazpur, Groups, Rajasthan. Geological Survey of India Report (RP/CGL/M-IV/2010/070 of 2010–2012).Google Scholar
  2. Bhowmik, S. K., Bernhardt, H. J., & Dasgupta, S. (2010). Grenvillian age high-pressure upper amphibolite–granulite metamorphism in the Aravalli-Delhi Mobile Belt, Northwestern India: New evidence from monazite chemical age and its implication. Precambrian Research, 178, 168–184.CrossRefGoogle Scholar
  3. Bhowmik, S. K., & Dasgupta, S. (2012). Tectonothermal evolution of the Banded Gneissic Complex in central Rajasthan, NW India: Present status and correlation. Journal of Asian Earth Sciences, 49, 339–348.CrossRefGoogle Scholar
  4. Bose, U., & Sharma, A. K. (1992). The volcano-sedimentary association of the Precambrian Hindoli supracrustals in southeast Rajasthan. Journal Geological Society of India, 40, 359–369.Google Scholar
  5. Buick, I. S., Clark, C., Rubatto, D., Hermann, J., Pandit, M., & Hand, M. (2010). Constraints on the Proterozoic evolution of the Aravalli-Delhi Orogenic belt (NW India) from monazite geochronology and mineral trace element geochemistry. Lithos, 120, 511–528.CrossRefGoogle Scholar
  6. Chakrabarti, R., Basu, A. R., & Chakrabarti, A. (2007). Trace element and Nd-isotopic evidence for sediment sources in the mid-Proterozoic Vindhyan Basin, central India. Precambrian Res., 159, 260–274.CrossRefGoogle Scholar
  7. Choudhary, A. K., Gopalan, K., & Sastry, C. A. (1984). Present status of the geochronology of the Precambrian rocks of Rajasthan. Tectonophysics, 105, 131–140.CrossRefGoogle Scholar
  8. Claoué-Long, J. C., Compston, W., Roberts, J., & Fanning, C. M. (1995). Two Carboniferous ages: a comparison of SHRIMP zircon dating with conventional zircon ages and Ar/Ar analysis. In: W. A. Berggren, D. V. Kent, M. P. Aubrey, & J. Hardenbol, (Eds.), Geochronology, time scales and global stratigraphic correlation (Vol. 4, pp. 3–21). SEPM Special Publication.CrossRefGoogle Scholar
  9. Condie, C. K. (1981). Geochemical and isotopic constraints on the origin and source of Archaen granites. Geological Society of Australia.Google Scholar
  10. Condie, K. C. (1989). Origin of the Earth’s crust. Global and Planetary Change, 1, 57–81.CrossRefGoogle Scholar
  11. Crawford, A. R. (1970). The Precambrian geochronology of Rajasthan and Bundelkhand, northern India. Canadian Journal of Earth Sciences, 7, 91–110.CrossRefGoogle Scholar
  12. de Wall, H., Pandit, M. K., Sharma, K. K., Schöbel, S., & Just, J. (2014). Deformation and granite intrusion in the Sirohi area, SW Rajasthan-constraints on Cryogenian to Pan-African crustal dynamics of NW India. Precambrian Research, 254, 1–18.CrossRefGoogle Scholar
  13. Deb, M., Thorpe, R., & Krstic, D. (2002). Hindoli Group of rocks in the eastern fringe of the Aravalli-Delhi orogenic belt-Archean secondary greenstone belt or Proterozoic supracrustals? Gondwana Research, 5, 879–883.CrossRefGoogle Scholar
  14. Dey, B. (2016). Structural characterization of the shear boundary between Hindoli and Mangalwar near Gadoli of Tonk, Rajasthan and the geochronology of major crystallines of the area (Unpublished M.Sc. thesis). Presidency University, India.Google Scholar
  15. Gregory, L. C., Meert, J. G., Bingen, B., Pandit, M. K., & Torsvik, T. H. (2009). Paleomagnetism and geochronology of the Malani Igneous Suite, Northwest India: Implications for the configuration of Rodinia and the assembly of Gondwana. Precambrian Research, 170, 13–26.CrossRefGoogle Scholar
  16. Gupta, B. C. (1934). The geology of central Mewar. Memoirs of the Geological Survey of India, 65, 107–168.Google Scholar
  17. Gupta, S. N., Arora, Y. K., Mathur, R. K., Iqbaluddin, Prasad, B., Sahai, T. N., et al. (1980). Lithostratigraphic map of Aravalli region, southern Rajasthan and southeastern Gujarat. Memoirs of the Geological Survey of India, 123:262.Google Scholar
  18. Gupta, P., Fareeduddin, Mukhopadhyay, K., & Reddy, M. S. (1991). Structural style in the rocks of the Delhi Supergroup along the eastern part of Aravalli range in central Rajasthan. Indian Journal of Geology, 63, 190–205.Google Scholar
  19. Heron, A. M. (1917). Geology of northeastern Rajputana and adjacent districts. Memoirs of the Geological Survey of India, 45, 128.Google Scholar
  20. Jenkin, G. R. T., Rogers, G., Fallick, A. E., & Farrow, C. M. (1995). Rb–Sr closure temperatures in bi-mineralic rocks: a mode effect and test for different diffusion models. Chemical Geology, 122, 227–240.CrossRefGoogle Scholar
  21. Kanazawa, T., Sager, W. W., & Escuita, C. (2001). Explanatory notes. Proceedings of the Ocean Drilling Program, Initial Report, 191, 46.Google Scholar
  22. Ludwig, K. (2012). User’s manual for Isoplot version 3.75–4.15: a geochronological toolkit for Microsoft. Excel Berkley Geochronological Center Special Publication, 5, 1–75.Google Scholar
  23. Malhotra, G., & Pandit, M. K. (2000). Geology and mineralization of the Jahazpur Belt, southeastern Rajasthan. Crustal evolution and metallogeny in the NW Indian Shield (pp. 115–125). New Delhi: Narosa Publishing.Google Scholar
  24. Meert, J. G., Pandit, M. K., Pradhan, V. R., Banks, J., Sirianni, R., Stroud, M., et al. (2010). Precambrian crustal evolution of Peninsular India: a 3.0 billion year odyssey. Journal of Asian Earth Science, 39, 483–515.CrossRefGoogle Scholar
  25. Mondal, M. E. A., Goswami, J. N., Deomurari, M. P., & Sharma, K. K. (2002). Ion microprobe207Pb/206Pb ages of zircons from the Bundelkhand massif, northern India: Implications for crustal evolution of the Bundelkhand-Aravalli protocontinent. Precambrian Res., 117, 85–100.CrossRefGoogle Scholar
  26. Mondal, M. E. A., Sharma, K. K., Rahman, A., & Goswami, J. N. (1998). Ion microprobe 207Pb/206Pb zircon ages for gneiss-granitoid rocks from Bundelkhand massif: Evidence for Archaean components. Current Science, 74, 70–74.Google Scholar
  27. Mukhopadhyay, D., Bhattacharyya, T., Chattopadhyay, N., Lopez, R., & Tobisch, O. T. (2000). Anasagar gneiss: a folded granitoid pluton in the Proterozoic South Delhi Fold Belt, central Rajasthan. Proceedings of the Indian Academy of Sciences (Earth and Planetary Sciences), 109, 21–37.Google Scholar
  28. Mukhopadhyay, D., Chattopadhyay, N., & Bhattacharya, T. (2010). Structural evolution of a gneiss dome in the axial zone of the Proterozoic South Delhi Fold Belt in Central Rajasthan. Journal of Geological Society of India, 75, 18–31.CrossRefGoogle Scholar
  29. Naha, K., & Mohanty, S. (1990). Structural studies in the Pre-Vindhyan rocks of Rajasthan: A summary of work of the last three decades. In: K., Naha, S. K. Ghosh, & D. Mukhopadhyay (Eds.), Structure and tectonics: The Indian scene (Vol. 99, pp. 279–291) (Proceedings of the Indian Academy of Sciences (Earth and Planetary Sciences).Google Scholar
  30. Naha, K., Mukhopadhyay, D. K., & Mohanty, R. (1988). Structural evolution of the rocks of the Delhi Group around Khetri, northeastern Rajasthan. In A. B. Roy (Ed.), Precambrian of the Aravalli Mountain, Rajasthan, India (Vol. 7, pp. 207–245) (Memoirs of the Geological Survey of India).Google Scholar
  31. Naha, K., Mukhopadhyay, D. K., Mohanty, R., Milra, S. K., & Biswal, T. K. (1984). Significance of contrast in the early stages of the structural history of the Delhi and pre-Delhi rock groups in the Proterozoic of Rajasthan, western India. Tectonophysics, 105, 193–206.CrossRefGoogle Scholar
  32. Naqvi, S. M., & Rogers, J. J. W. (1987). Precambrian geology of India. Oxford: Oxford University Press.Google Scholar
  33. Nelson, D. R. (2006). CONCH: A visual basic program for interactive processing of ion- microprobe analytical data. Computers & Geosciences, 32, 1479–1498.CrossRefGoogle Scholar
  34. Paces, J. B., & Miller, J. D. (1993). Precise U–Pb ages of Duluth complex and related mafic intrusions, northeastern Minnesota: Geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift system. Journal of Geophysical Research: Solid Earth, 98(B8), 13997–14013.CrossRefGoogle Scholar
  35. Pandit, M. K., Sial, A. N., Malhotra, G., Shekhawat, L. S., & Ferreira, V. P. (2003). C-, O-isotope and whole-rock geochemistry of Proterozoic Jahazpur carbonates, NW Indian Craton. Gondwana Research, 6, 513–522.CrossRefGoogle Scholar
  36. Purohit, R., Papineou, D., Kröner, A., Sharma, K. K., & Roy, A. B. (2012). Carbon isotope geochemistry and geochronological constraints of the Neoproterozoic Sirohi Group from northwest India. Precambrian Research, 220–221, 80–90.CrossRefGoogle Scholar
  37. Raja Rao, C. S. (1967). On the age of the Precambrian Groups of Rajasthan. Journal of Mines, Metals and Fuels, 15, 306–309.Google Scholar
  38. Raja Rao, C. S. (1976). Precambrian sequences of Rajasthan. Geological Survey of India, 23, 497–516.Google Scholar
  39. Roy, A. B. (1988). Stratigraphic and tectonic framework of the Aravalli Mountain Range. In A. B. Roy, (Ed.), Precambrian of the Aravalli Mountain, Rajasthan, India (Vol. 7, pp. 3–31) (Memoirs of the Geological Survey of India).Google Scholar
  40. Roy, A. B. (1990). Evolution of the Precambrian crust of the Aravalli Mountain Range. In S. M. Naqvi (Ed.), Precambrian continental crust and its economic resources (development in Precambrian geology) (pp. 327–348). Amsterdam: Elsevier.CrossRefGoogle Scholar
  41. Roy, A. B., Kröner, A., Bhattachaya, P. K., & Rathore, S. (2005). Metamorphic evolution and zircon geochronology of early Proterozoic granulites in the Aravalli Mountains of northwestern India. Geological Magazine, 142, 287–302.CrossRefGoogle Scholar
  42. Saha, D., Bhowmik, S. K., Bose, S., & Sajeev, K. (2016a). Proterozoic tectonics and trans-Indian mobile belts: a status report. Proceedings of Indian National Science Academy, 82, 445–460.Google Scholar
  43. Saha, S., Das, K., Hidaka, H., Kimura, K., Chakraborty, P. P., & Hayasaka, Y. (2016b). Detrital zircon geochronology (U–Pb SHRIMP and LA-ICPMS) from the Ampani Basin, Central India: Implication for provenance and Mesoproterozoic tectonics at East Indian cratonic margin. Precambrian Research, 281, 363–383.CrossRefGoogle Scholar
  44. Sharma, R. S. (1988). Patterns of metamorphism in the Precambrian rocks of the Aravalli mountain belt. In A. B. Roy, (Ed.), Precambrian of the Aravalli Mountain, Rajasthan, India (Vol. 7, pp. 33–76) (Memoirs of the Geological Survey of India).Google Scholar
  45. Sharma, K. K., & Rahman, A. (2000). The Early Archaean–Paleoproterozoic crustal growth of the Bundelkhand craton, northern Indian shield. Crustal evolution and metallogeny in the Northwestern Indian Shield (pp. 51–72.). New Delhi: Narosa Publishing House.Google Scholar
  46. Sinha Roy, S. (1985) Granite-greenstone sequence and geotectonic development of SE Rajasthan. In: Megastructures and plate tectonics and their role as a guide to ore mineralization. Bulletin Geological Mining Metallurgical Society of India, 34, 233–244.Google Scholar
  47. Sinha Roy, S. (1988). Proterozoic Wilson cycles in Rajasthan. In A. B. Roy (Ed.), Precambrian of the Aravalli Mountain, Rajasthan, India (Vo. 7, pp. 95–108) (Memoirs of the Geological Survey of India).Google Scholar
  48. Sinha Roy, S., & Malhotra, G. (1989). Structural relations of Proterozoic cover and its basement: an example from the Jahazpur belt, Rajasthan. Journal of Geological Society of India, 34, 233–244.Google Scholar
  49. Tewari, H. C., & Kumar, P. (2003). Deep seismic sounding studies in India and its tectonic implications. Journal of Virtual Explorer, 12, 30–54.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Bidisha Dey
    • 1
    • 2
  • Kaushik Das
    • 2
    Email author
  • Nilanjan Dasgupta
    • 1
  • Sankar Bose
    • 1
  • Hiroshi Hidaka
    • 2
    • 3
  • Hindol Ghatak
    • 1
  1. 1.Department of GeologyPresidency UniversityKolkataIndia
  2. 2.Department of Earth and Planetary Systems ScienceHiroshima UniversityHiroshimaJapan
  3. 3.Department of Earth and Planetary SciencesNagoya UniversityNagoyaJapan

Personalised recommendations