Advertisement

Megascopic Carbonaceous Remains from Proterozoic Basins of India

  • Mukund SharmaEmail author
  • Veeru Kant Singh
Chapter
Part of the Society of Earth Scientists Series book series (SESS)

Abstract

Megascopic carbonaceous remains, occurring on the bedding planes of the areno-argillaceous successions of the Precambrian, are the important evidence of the early life forms. A wide variety of such forms are described from the Proterozoic successions of India viz., the Vindhyan, Chhattisgarh, Kurnool and Bhima basins in peninsular India and some of the carbonate belts of the Lesser Himalaya. The ChuariaTawuia assemblage invariably constitutes the most important element of megascopic carbonaceous remains in these basins. Besides, simple films to morphologically complex forms are also recorded. In the present paper, knowledge and status of megascopic carbonaceous remains entombed in these successions of India with their significance in understanding the earth’s earliest biosphere are reviewed. Two principal questions are addressed: Are these carbonaceous mega-remains divulge any evolutionary steps and event in the Precambrian? Is there any discernable biostratigraphic potential in these carbonaceous mega-remains in space and time? The review reveals that coccoidal/spherical propkaryotic forms attained gigantism for the first time around Palaeoproterozoic/Mesoproterozoic boundary and this phenomenon was repeated in the geiological history around cryogenian. Eukaryotic carbonaceous remains show morphological changes from simple non processed to processed forms. A scheme of biozonation on the distribution pattern of the carbonaceous mega-remains in the Proterozoic successions, with form and function of the some of these remains, is presented.

Keywords

Carbonaceous remains ChuariaTawuia Prokaryote Eukaryote India 

Notes

Acknowledgements

N. J. Butterfield, Shuhai Xiao, Gregory Retallack, S. Kumar and S. K. Pandey are thanked for insightful discussions on the aspects of carbonaceous remains and their utility in understanding the evolution of Precambrian biosphere. We express our sincere thanks to the Society of Earth Scientists (SES) and Bundelkhand University to provide us the opportunity to present this data in National Conference and Field-workshop on Precambrians of India. We are grateful to the Sunil Bajpai, Director, Birbal Sahni Institute of Palaeosciences for providing the facilities to carryout present study and permission to publish the paper (BSIP/RDCC/22/2017-18). Views expressed in the paper are those of the authors.

References

  1. Amard, B. (1992). Ultrastructure of Chuaria (Walcott) Vidal and Ford (Acritarcha) from the Late Proterozoic Pendjari Formation, Benin and Burkina-Faso, West Africa. Precambrian Research, 57, 121–133.CrossRefGoogle Scholar
  2. Arouri, K. R., Greenwood, P. F., & Walter, M. R. (2000). Biological affinities of Neoproterozoic acritarchs from Australia: Microscopic and chemical characterisation. Organic Geochemistry, 31, 75–89.CrossRefGoogle Scholar
  3. Auden, J. B. (1933). Vindhyan sedimentation in the Son Valley Mirzapur district. Memoirs of the Geological Survey of India, 62(2), 141–250.Google Scholar
  4. Babu, R., & Singh, V. K. (2011). Record of aquatic carbonaceous metaphytic remains from the Proterozoic Singhora Group of Chhattisgarh Supergroup, India and their significance. Journal of Evolutionary Biology Research, 3, 47–66.Google Scholar
  5. Babu, R., & Singh, V. K. (2013). An evaluation of Carbonaceou metaphytic remains from the Proterozoic Singhora Group of Chhattisgarh Supergroup, India. Special Publication of Geological Society of India, 1, 325–338.Google Scholar
  6. Bengtson, S., Sallstedt, T., Belivanova, V., & Whitehouse, M. (2017). Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae. PLoS Biology, 15, e2000735.CrossRefGoogle Scholar
  7. Bickford, M. E., Basu, A., Mukherjee, A., Hietpas, J., Schieber, J., Patranabis-Deb, S., et al. (2011a). New U-Pb SHRIMP zircon ages of the Dhamda tuff in the Mesoproterozoic Chhattisgarh basin, peninsular India: Stratigraphic implications and significance of a 1-Ga thermal-magmatic event. Journal of Geology, 119, 535–548.CrossRefGoogle Scholar
  8. Bickford, M. E., Basu, A., Patranabis-Deb, S., Dhang, P. C., & Schieber, J. (2011b). Depositional history of the Chhattisgarh Basin, central India; Constraints from new SHRIMP zircon ages. Journal of Geology, 119, 33–50.CrossRefGoogle Scholar
  9. Brasier, M. D., & Lindsay, J. F. (1998). A billion years of environmental stability and the emergence of eukaryotes: New data from northern Australia. Geology, 26(6), 555–558.CrossRefGoogle Scholar
  10. Butterfield, N. J. (2000). Bangiomorpha pubescens n. gen., n. sp.: Implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology, 26, 386–404.CrossRefGoogle Scholar
  11. Butterfield, N. J. (2004). A vaucheriacean alga from the middle Neoproterozoic of Spitsbergen: Implications for the evolution of Proterozoic eukaryotes and the Cambrian explosion. Paleobiology, 30, 231–252.CrossRefGoogle Scholar
  12. Butterfield, N. J., Knoll, A. H., & Swett, K. (1994). Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen. Fossils and Strata, 34, 84. Google Scholar
  13. Chakraborty, P. P., Dey, S., & Mohanty, S. P. (2010). Proterozoic platform sequences of Peninsular India: Implications towards basin evolution and supercontinent assembly. Journal of Asian Earth Sciences, 39, 589–607.CrossRefGoogle Scholar
  14. Chakraborty, P. P., Saha, S., & Das, P. (2015). Geology of Mesoproterozoic Chhattisgarh Basin, central India: Current status and future goals. Geological Society, London, Memoirs, 43, 185–205 (Chapter 13).CrossRefGoogle Scholar
  15. Chen, M., Lu, G., & Xiao, Z. (1994a). Preliminary study on the algal macrofossils—Lantian Flora from the Lantian Formation of Upper Sinian in southern Anhui. Bulletin Institute of Geology, Academia Sinica, 7, 252–267.Google Scholar
  16. Chen, M., Xiao, Z., & Yuan, X. (1994b). A new assemblage of megafossils—Miaohe biota from Upper Sinian Doushantuo Formation, Yangtze Gorges. Acta Palaeontologica Sinica, 33, 391–403.Google Scholar
  17. Das Sarma, D. C., Raha, P. K., Moitra, A. K., Ashok Kumar, P., Anantharaman, S., Rama Rao, U., et al. (1992). Discovery of Precambrian-Cambrian transitional fossil sabellitids from India. Current Science, 63, 140–142.Google Scholar
  18. Ding, L., Huang, J., Xiao, Y., & Hu, X. (1996). The Miaohe biota and its classification of organisms. Beijing: Geological Publishing House.Google Scholar
  19. Dong, L., Xiao, S., Shen, B., & Zhou, C. (2008). Silicified Horodyskia and Palaeopascichnus from upper Ediacaran cherts in South China: Tentative phylogenetic interpretation and implications for evolutionary stasis. Journal of the Geological Society, 165, 367–378.CrossRefGoogle Scholar
  20. Droser, M. L., Gehling, J. G., & Jensen, S. R. (2006). Assemblage palaeoecology of the Ediacara biota: The unabridged edition? Palaeogeography, Palaeoclimatology, Palaeoecology, 232, 131–147.CrossRefGoogle Scholar
  21. Du, R. (1982). The discovery of the fossils such as Chuaia in the Qingbaikou System in the Northwestern Hebei and their significance. Geological Review, 28, 1–7.Google Scholar
  22. Du, R., & Tian, L. (1985). Discovery and preliminary study of mega-alga Longfengshania from the Qingbaikou System of the Yanshan Mountain area. Dizhixue Bao = Acta Geologica Sinica, 59, 183–190.Google Scholar
  23. Du, R., Tian, L., & Li, H. (1986). Discovery of Megafossils in the Gaoyuzhuang Formation of the Chancheng System, Jixian. Acta Geologica Sinica, 60, 115–119.Google Scholar
  24. Duan, C. (1982). Late Precambrian algal megafossil Chuaria and Tawuia in some areas of China. Alcheringa, 6, 57–68.CrossRefGoogle Scholar
  25. Dutta, S., Steiner, M., Banerjee, S., Erdtmann, B. D., van Jeevankumar, S., & Mann, U. (2006). Chuaria circularis from the early Mesoproterozoic Suket Shale, Vindhyan Supergroup, India: Insights from light and electron microscopy and pyrolysis-gas chromatography. Journal of Earth System Science, 115, 99–112.CrossRefGoogle Scholar
  26. Echwald, E. (1854). The Paleontology of Russia. In The ancient period, Flora of the graywacke, calcareous rocks and cuprous-shale Formation of Russia (p. 245). St. Petersburg.Google Scholar
  27. Fedonkin, M. A., & Yochelson, E. L. (2002). Middle Proterozoic (1.5 Ga) Horodyskia moniliformis Yochelson and Fedonkin, the Oldest Known Tissue-Grade Colonial Eucaryote. Smithsonian Contributions to Paleobiology, 94, 1–29.CrossRefGoogle Scholar
  28. Ford, T. D., & Breed, W. J. (1973). The probletical Precambrian fossils Chuaria palaeontology, 16, 533–550.Google Scholar
  29. Glaessner, M. F. (1987). Discussion about some “worm-like fossils”. Precambrian Research, 36, 353–355.CrossRefGoogle Scholar
  30. Gnilovskaya, M. B. (1971). The oldest aquatic plants of the Vendian of the Russian Platform, late Precambrian. Paleontologicheskiy Zhurnal, 3, 101–107.Google Scholar
  31. Gnilovskaya, M. B., Veis, A. F., Bekker, Y. R., Olovyanishnikov, V. G., & Raaben, M. E. (2000). Pre-Ediacarian fauna from Timan (annelidomorphs of the Late Riphean). Stratigraphy and Geological Correlation, 8, 327–352.Google Scholar
  32. Gopalan, K., Kumar, A., Kumar, S., & Vijayagopal, B. (2013). Depositional history of the Upper Vindhyan succession, central India: Time constraints from Pb–Pb isochron ages of its carbonate components. Precambrian Research, 233, 108–117.CrossRefGoogle Scholar
  33. Gowda, S. S., Venugopal, S. K., & Sundara Raju, T. P. (1979). Late Proterozoic marine plankton (Chuaria circularis Walcott) from the Bhima rocks of South India. In Professor Kurien’s 60th Birthday Commemorative Volume, University of Cochin, Marine Science Cochin (pp. 170–172).Google Scholar
  34. Han, T. M., & Runnegar, B. (1992). Megascopic Eukaryotic Algae from the 2.1 billion-year-old Negaunee Iron-Formation. Michigan. Science, 257, 232–235.Google Scholar
  35. Hardie, J. (1833). Sketch of the geology of central India, exclusive of Malwa. Asiatic Researches, XIX(2), 27–92.Google Scholar
  36. Hofmann, H. J. (1972). Systematically branching burrows from the lower ordovician (Quebec Group) near Quebec, Canada. Paläontologische Zeitschrift, 46, 186–198.CrossRefGoogle Scholar
  37. Hofmann, H. J. (1985a). The mid-Proterozoic Little Dal macrobiota, Mackenzie Mountains, north-west Canada. Palaeontology, 28, 331–354.Google Scholar
  38. Hofmann, H. J. (1985b). Precambrian carbonaceous megafossils. In Paleoalgology: Contemporary research and applications (pp. 20–33).CrossRefGoogle Scholar
  39. Hofmann, H. J. (1987). Precambrian biostratigraphy. Geoscience Canada, 14, 135–154.Google Scholar
  40. Hofmann, H. J. (1992). Proterozoic and selected Cambrian megascopic carbonaceous films. In J. W. Schopf & C. Klein (Eds.), The Proterozoic biosphere, a multidisciplinary study (pp. 957–998). Cambridge: Cambridge University Press.Google Scholar
  41. Hofmann, H. J. (1994). Proterozoic carbonaceous compressions (“metaphytes” and “worms”). In S. Bengtson (Ed.), Early life on earth (pp. 342–357). New York: Columbia University Press.Google Scholar
  42. Hofmann, H. J., & Chen, J. (1981). Carbonaceous megafossils from the Precambrian (1800 Ma) near Jixian, Northern China. Canadian Journal of Earth Sciences, 18, 443–447.CrossRefGoogle Scholar
  43. Holland, H. D. (2006). The oxygenation of the atmosphere and oceans. Philosophical Transactions of the Royal Society: Biological Sciences, 361, 903–915.CrossRefGoogle Scholar
  44. Horodyski, R. J. (1982). Problematic bedding-plane markings from the Middle Proterozoic Appekunny Argillite, Belt Supergroup, northwestern Montana. Journal of Paleontology, 56, 882–889.Google Scholar
  45. Horodyski, R. J. (1993). Paleontology of proterozoic shales and mudstones: Examples from the Belt supergroup, Chuar group and Pahrump group, western USA. Precambrian Research, 61, 241–278.CrossRefGoogle Scholar
  46. Huntley, J. W., Xiao, S., & Kowalewski, M. (2006). 1.3 billion years of acritarch history: An empirical morphospace approach. Precambrian Research, 144, 52–68.CrossRefGoogle Scholar
  47. Johnston, D. T., Poulton, S. W., Dehler, C., Porter, S., Husson, J., Canfield, D. E., et al. (2010). An emerging picture of neoproterozoic ocean chemistry: Insights from the Chuar Group, Grand Canyon, USA. Earth and Planetary Science Letters, 290(1–2), 64–73.CrossRefGoogle Scholar
  48. Jones, H. C. (1909). General report. Records Geological Survey of India, 38, 66.Google Scholar
  49. Kale, V. S., & Phansalkar, V. G. (1991). Purana basins of peninsular India: A review. Basin Research, 3, 1–36.CrossRefGoogle Scholar
  50. King, W. (1872). On the Kadapah and Karnul Formations in the Madras Presidency. Memmoir Geological Survey of India, 8, 313.Google Scholar
  51. Knoll, A. H. (2014). Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harbor Perspectives in Biology, 6, 1–16.CrossRefGoogle Scholar
  52. Kumar, S. (1995). Megafossils from the Mesoproterozoic Rohtas Formation (the Vindhyan Supergroup), Katni area, central India. Precambrian Research, 72, 171–184.CrossRefGoogle Scholar
  53. Kumar, S. (2001). Mesoproterozoic megafossil Chuaria-Tawuia association may represent parts of a multicellular plant, Vindhyan supergroup, central India. Precambrian Research, 106, 187–211.CrossRefGoogle Scholar
  54. Kumar, S. (2016). Megafossils from the Vindhyan Basin, Central India: An overview. Journal of the Palaeontological Society of India, 61, 273–286.Google Scholar
  55. Kumar, S., & Gupta, S. (2002). Field guide, Vindhyan Basin, Son Valley area, Central India. Journal of the Palaeontological Society of India, 107.Google Scholar
  56. Kumar, S., & Sharma, M. (2012). Vindhyan Basin, Son valley area, Central India. In PSI Field Guide Book-4 (pp. 1–145).Google Scholar
  57. Kumar, S., & Srivastava, P. (2003). Carbonaceous megafossils from the Neoproterozoic Bhander Group, Central India. Journal of the Palaeontological Society of India, 48, 139–154.Google Scholar
  58. Lakshminarayan, G., Bhattacharjee, S., & Kumar, A. (1999). Palaeocurrent and depositional setting in the Banganpalle Formation, Kurnool sub-basin, Cuddapah Basin, Andhra Pradesh. Journal Geological Society India, 53, 255–259.Google Scholar
  59. Lamb, D. M., Awramik, S. M., & Zhu, S. (2007). Paleoproterozoic compression-like structures from the Changzhougou Formation, China: Eukaryotes or clasts? Precambrian Research, 154, 236–247.CrossRefGoogle Scholar
  60. Maithy, P. K. (1991). On Krishnania Sahni and Shrivastava, a Mid-Proterozoic macrofossil. Journal of the Palaeontological Society of India, 36, 59–65.Google Scholar
  61. Maithy, P. K., & Babu, R. (1988). The mid-proterozoic Vindhyan macrobiota from Chopan, southeast Uttar Pradesh. Journal Geological Society of India, 31, 584–590.Google Scholar
  62. Maithy, P. K., & Babu, R. (1996). Carbonaceous macrofossils and organic-walled microfossils from the Halkal Formation, Bhima Group, Karnataka with remarks on age. The Palaeobotanist, 45, 1–6.Google Scholar
  63. Maithy, P. K., & Babu, R. (2004). Some new information on the Carbonaceous Macrofossils Chuaria, Tawuia and related remains fromthe Indian Mesoproterozoic sequences. In B. Bahadur (Ed.), Gleanings in botanical research: Current scenario (pp. 175–187). Nagpur: Dattsons.Google Scholar
  64. Maithy, P. K., & Shukla, M. (1984). Reappraisal of Fermoria and allied remains from Suket Formation. Palaeobotanist, 32, 146–152.Google Scholar
  65. McLelland, J. (1834). Notice of some fossil impressions occurring in the transitional limestone of Kumaun. Journal of Asiatic Society, Bengal, 3, 628–631.Google Scholar
  66. Meert, J. G., Pandit, M. K., Pradhan, V. R., Banks, J., Sirianni, R., Stroud, M., et al. (2010). Precambrian crustal evolution of Peninsular India: A 3.0 billion year odyssey. Journal of Asian Earth Sciences, 39, 483–515.CrossRefGoogle Scholar
  67. Nathorst, A. G. (1879). En Egendomlig Strukturvarietet af lerhaltig Kalksten Fran Grennatrakten. Geologiska Föreningen i Stockholm Förhandlingar, 4, 216.Google Scholar
  68. Niu, S. (1998). Confirmation of the genus Grypania (megascopic alga) in Gaoyuzhuang Formation (1434 Ma) in Jixian (Tianjin) and its significance. Progress in Precambrian Research, 21, 38–46.Google Scholar
  69. Pandey, S. K., & Sharma, M. (2016). Enigmatic Ediacaran megascopic bedding plane structures on the Sonia Sandstone, Jodhpur Group, Marwar Supergroup, India: Seaweed or problematica? Geological Journal, 52(5), 784–807.  https://doi.org/10.1002/gj.2840.CrossRefGoogle Scholar
  70. Powell, J. W. (1876). Report on the geology of the eastern portion of the Uinta Mountains. U.S. Geological Survey, 218.Google Scholar
  71. Qian, M., Yuan, X., Wang, Y., & Yan, Y. (2000). New material of metaphytes from the Neoproterozoic Jinshanzhai Formation in Huaibei, North anhui, China. Acta Palaeontologica Sinica, 39, 516–520.Google Scholar
  72. Raha, P. K., & Sastry, M. V. A. (1982). Stromatolites and Precambrian stratigraphy in India. Precambrain Research, 18, 293–318.CrossRefGoogle Scholar
  73. Rai, V., & Gautam, R. (1998). Discovery of silicified microfossils from the Khatpul Formation, Shali Group (Neoproterozoic), H.P., India. Current Science, 74, 541–545.Google Scholar
  74. Rai, V., Shukla, M., & Gautam, R. (1997). Discovery of carbonaceous megafossils (Chuaria-Tawuia assemblage) from the Neoproterozoic Vindhyan succession (Rewa Group), Allahabad-Rewa area, India. Current Science, 73, 783–788.Google Scholar
  75. Rai, V., & Singh, V. K. (2006). Discovery of megascopic multicellularity in deep time: New evidences from the ~1.63 billion years old Lower Vindhyan succession, Vindhyan Supergroup, Uttar Pradesh, India. Journal of Applied Bioscience, 32, 196–203.Google Scholar
  76. Ray, J. S., Veizer, J., & Davis, W. J. (2003). C, O, Sr and Pb isotope systematics of carbonate sequences of the Vindhyan Supergroup, India; age, diagenesis, correlations and implications for global events. Precambrian Research, 121, 103–140.CrossRefGoogle Scholar
  77. Samuelsson, J., & Butterfield, N. J. (2001). Neoproterozoic fossils from the Franklin Mountains, northwestern Canada: stratigraphic and palaeobiological implications. Precambrian Research, 107, 235–251.CrossRefGoogle Scholar
  78. Schneider, D. A., Bickford, M. E., Cannon, W. F., Schulz, K. J., & Hamilton, M. A. (2002). Age of volcanic rocks and syndepositional iron formations, Marquette Range Supergroup: Implications for the tectonic setting of Paleoproterozoic iron formations of the Lake Superior region. Canadian Journal of Earth Sciences, 39, 999–1012.CrossRefGoogle Scholar
  79. Sergeev, V. N., Sharma, M., & Shukla, Y. (2012). Proterozoic fossil cyanobacteria. Palaeobotanist, 61, 189–358.Google Scholar
  80. Sharma, M. (2003). Age of Vindhyans; palaeobiological evidence; A paradigm shift (?). Journal of the Palaeontological Society of India, 48, 191–214.Google Scholar
  81. Sharma, M. (2006). Late Palaeoproterozoic (Statherian) carbonaceous films from the Olive Shale (Koldaha Shale), Semri Group, Vindhyan Supergroup, India. Journal of the Palaeontological Society of India, 51, 27–35.Google Scholar
  82. Sharma, M., & Shukla, M. (1996). Diversity and gigantism of carbonaceous macrofossils in Terminal Proterozoic Bhima Basin of India. In Abstracts of the 30th International Geological Congress (Vol. 2, p. 52). Beijing, China.Google Scholar
  83. Sharma, M., & Shukla, M. (1999). Carbonaceous megaremains from the neoproterozoic Owk Shales Formation of the Kurnool Group, Andhra Pradesh, India. Current Science, 76, 1247–1251.Google Scholar
  84. Sharma, M., Shukla, M., & Venkatachala, B. S. (1991). Metaphyte and metazoan fossils from Precambrian sediments of India: A critique. The Palaeobotanist, 40, 8–51.Google Scholar
  85. Sharma, M., & Shukla, Y. (2009a). Mesoproterozoic coiled megascopic fossil Grypania spiralis from the Rohtas Formation, Semri Group, Bihar, India. Current Science, 96, 1636–1640.Google Scholar
  86. Sharma, M., & Shukla, Y. (2009b). Taxonomy and affinity of early Mesoproterozoic megascopic helically coiled and related fossils from the Rohtas Formation, the Vindhyan Supergroup, India. Precambrian Research, 173, 105–122.CrossRefGoogle Scholar
  87. Sharma, M., & Shukla, Y. (2012). Megascopic carbonaceous compression fossils from the neoproterozoic Bhima Basin, Karnataka, South India. Geological Society Special Publication, 366, 277–293.CrossRefGoogle Scholar
  88. Sharma, M., & Shukla, Y. (2016). The Palaeobiological remains of the Owk Shale, Kurnool Basin: A discussion on the age of the basin. Journal of the Palaeontological Society of India, 61, 175–187.Google Scholar
  89. Sharma, M., Mishra, S., Dutta, S., Banerjee, S. & Shukla, Y. (2009). On the affinity of Chuaria-Tawuia Complex; a multidisciplinary study. Precambrian Research, 173, 123–136.CrossRefGoogle Scholar
  90. Sharma, M., Tiwari, M., Ahmad, S., Shukla, R., Shukla, B., Singh, V. K., et al. (2016). Palaeobiology of Indian Proterozoic and early Cambrian successions—Recent developments. Proceedings of the Indian National Science Academy, 82, 559–579.Google Scholar
  91. Singh, S. K., & Chandra, G. (1987). Fossil Jelly fish from lower Vindhyan rocks of Rohtas, India. Geological Survey of India Special Publication, 1(II), 114–117.Google Scholar
  92. Singh, V. K., Babu, R., & Shukla, M. (2009). Discovery of carbonaceous remains from the Neoproterozoic shales of Vindhyan Supergroup, India. Journal of Evolutionary Biology Research, 1, 001–017.Google Scholar
  93. Soni, M. K., Chakraborty, S., & Jain, V. K. (1987). Vindhyan supergroup: A review. Memoir—Geological Society of India, 6, 87–138.Google Scholar
  94. Srivastava, P. (2002). Carbonaceous Megafossils from the Dholpura Shale, uppermost Vindhyan Supergroup, Rajasthan: an age implication. Journal of the Palaeontological Society of India, 47, 97–105.Google Scholar
  95. Srivastava, P. (2004). Carbonaceous fossils from the Panna Shale, Rewa Group (Upper Vindhyans), Central India: A possible link between evolution from micro-megascopic life. Current Science, 86, 644–646.Google Scholar
  96. Srivastava, P., & Bali, R. (2006). Proterozoic carbonaceous remains from the Chorhat Sandstone: oldest fossils of the Vindhyan Supergroup, Central India. Geobios, 39, 873–878.CrossRefGoogle Scholar
  97. Steiner, M. (1994). Die neoproterozoischen Megaalgen Sudchinas. Berliner geowissenschaftliche Abhandlungen (E), 15, 1–146.Google Scholar
  98. Sun, W. (1987). Discussions on the age of the Liulaobei Formation. Precambrian Research, 36, 349–352.CrossRefGoogle Scholar
  99. Sun, W., Wang, G., & Zhou, B. (1986). Macroscopic worm-like body fossils from the upper precambrian (900–700 Ma), huainan district, anhui, China and their stratigraphic and evolutionary significance. Precambrian Research, 31, 377–403.CrossRefGoogle Scholar
  100. Sun, S., Zhu, S., & Huang, X. (2006). Discovery of megafossils from the Mesoproterozoic Gaoyuzhuang Formation in the Jixian section, Tianjin and its stratigraphic significance. Acta Palaeontologica Sinica, 45, 207–220.Google Scholar
  101. Tandon, K. K., & Kumar, S. (1977). New fossil from the Lower Vindhyan rocks (Precambrian) of Central India. Current Science, 46, 563.Google Scholar
  102. Tang, F., Song, X., Yin, C., Liu, P., Awramik, S. M., Wang, Z., et al. (2007). Discoveries of new Longfengshaniaceae from the uppermost Ediacaran in eastern Yunnan, South China and the significance. Frontiers of Earth Science in China, 1, 142–149.CrossRefGoogle Scholar
  103. Timofeev, B. V., & Hermann, T. N. (1979). Precambrian microbiota of the Lakhanda Formation. In B. S. Sokolov (Ed.), Paleontology of the Precambrian and early Cambrian (pp. 137–147). Leningrad: Nauka. (in Russian).Google Scholar
  104. Venkatachala, B. S., Sharma, M., & Shukla, M. (1996). Age and life of the Vindhyans—Facts and conjectures. Memoir Geological Society of India, 36, 137–165.Google Scholar
  105. Vidal, G. (1989). Are late Proterozoic carbonaceous megafossils metaphytic algae or bacteria? Lethaia, 22, 375–379.CrossRefGoogle Scholar
  106. Vidal, G., Moczydlowska, M., & Rudavskaya, V. A. (1993). Biostratigraphical implications of a Chuaria-Tawuia assemblage and associated acritarchs from the Neoproterozoic of Yakutia. Palaeontology, 36, 387–402.Google Scholar
  107. Walcott, C. D. (1893). Geological time, as indicated by the sedimentary rocks of North America. Journal of Geology, 1, 639–676.CrossRefGoogle Scholar
  108. Walcott, C. D. (1898). Fossil Medusa. Monographs of the United States Geological Survey, 30, 201.Google Scholar
  109. Walcott, C. D. (1899). Pre-Cambrian fossiliferous formations. Bulletin of Geological Society of America, 10, 199–244.CrossRefGoogle Scholar
  110. Walter, M. R., Du, R., & Horodyski, R. J. (1990). Coiled carbonaceous megafossils from the middle Proterozoic of Jixian (Tianjin) and Montana. American Journal of Science, 290-A, 133–148.Google Scholar
  111. Walter, M. R., Oehler, J. H., & Oehler, D. Z. (1976). Megascopic algae 1300 million years old from the Belt Supergroup, Montana: A reinterpretation of Walcott’s Helminthoidichnites. Journal of Paleontology, 50, 872–881.Google Scholar
  112. Wan, B., Yuan, X., Chen, Z., Guan, C., Pang, K., Tang, Q., et al. (2013). Quantitative analysis of Flabellophyton from the ediacaran Lantian Biota, South China: Application of geometric morphometries in precambrian fossil research. Acta Geologica Sinica, 87, 905–915.CrossRefGoogle Scholar
  113. Wang, W., Guan, C., Zhou, C., Wan, B., Tang, Q., Chen, X., et al. (2014). Exceptional preservation of macrofossils from the Ediacaran Lantian and Miaohe Biotas, South China. Palaios, 29, 129–136.CrossRefGoogle Scholar
  114. Wang, Y., Wang, Y., & Du, W. (2016). The long-ranging macroalga Grypania spiralis from the Ediacaran Doushantuo Formation, Guizhou, South China. Alcheringa, 40, 1–10.CrossRefGoogle Scholar
  115. White, D. (1928). Study of the fossil floras in the Grand Canyon, Carnegie Instn. Year book 27, WA, 389–390.Google Scholar
  116. Wiman, C. (1894). Paleontologische Notizen, 1 und 2. Bulletin of the Geological Institution of the University of Upsala, 2, 109–117.Google Scholar
  117. Xiao, S. (2013). Written in stone: The fossil record of early eukaryotes. In G. Trueba & C. Montúfar (Eds.), Evolution from the Galapagos: Two centuries after Darwin (pp. 107–124). New York, NY: Springer.CrossRefGoogle Scholar
  118. Xiao, S., & Dong, L. (2006). On the morphological and ecological history of Proterozoic macroalgae. Topics in Geobiology, 27, 57–90.CrossRefGoogle Scholar
  119. Xiao, S., Yuan, X., Steiner, M., & Knoll, A. H. (2002). Macroscopic carbonaceous compressions in a terminal proterozoic shale: A systematic reassessment of the Miaohe Biota, South China. Journal of Paleontology, 76, 347–376.CrossRefGoogle Scholar
  120. Yan, Y. (1995). Discovery and preliminary study of megascopic algae (1700 Ma) from the Tuanshanzi Formation in Jixian, Hebei. Acta Micropalaeontologica Sinica, 12, 107–126.Google Scholar
  121. Yan, Y., & Liu, Z. (1997). Tuanshanzian macroscopic algae of 1700 Ma B. P. from Changcheng system of Jixian, China. Acta Palaeontologica Sinica, 36, 18–41.Google Scholar
  122. Ye, Q., Tong, J., Xiao, S., Zhu, S., An, Z., Tian, L., et al. (2015). The survival of benthic macroscopic phototrophs on a Neoproterozoic snowball Earth. Geology, 43, 507–510.CrossRefGoogle Scholar
  123. Yin, C., Liu, P., Gao, L., & Wang, Z. (2009). Neoproterozoic macrofossil records in South China and biostratigraphic successions and correlations. Diqiu Xuebao = Acta Geoscientia Sinica, 30, 505–522.Google Scholar
  124. Yochelson, E. L., & Fedonkin, M. A. (2000). A new tissue-grade organism 1. 5 billion years old from Montana. Proceedings of the Biological Society of Washington, 113, 843–847.Google Scholar
  125. Yuan, X. (1999). A review of studies on Neoproterozoic microfossil assemblages of Weng’an biota in Weng’an County, Guizhou, China. Acta Micropalaeontologica Sinica = Weiti Gushengwu Xuebao, 16, 281–286.Google Scholar
  126. Yuan, X., Chen, Z., Xiao, S., Wan, B., Guan, C., Wang, W., et al. (2013). The Lantian biota: A new window onto the origin and early evolution of multicellular organisms. Chinese Science Bulletin, 58, 701–707.CrossRefGoogle Scholar
  127. Yuan, X., Chen, Z., Xiao, S., Zhou, C., & Hua, H. (2011). An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes. Nature, 470, 390–393.CrossRefGoogle Scholar
  128. Zang, W., & Walter, M. R. (1992). Late Proterozoic and Cambrian microfossils and biostratigraphy, Amadeus Basin, central Australia. Memoir of the Association of Australasian Palaeontologists, 12, 1–132.Google Scholar
  129. Zhu, S., & Chen, H. (1995). Megascopic multicellular organisms from the 1700-million-year-old Tuanshanzi Formation in the Jixian area, North China. Science, 270, 620–622.CrossRefGoogle Scholar
  130. Zhu, S., Sun, S., Huang, X., He, Y., Zhu, G., Sun, L., et al. (2000). Discovery of carbonaceous compressions and their multicellular tissues from the Changzhougou Formation (1800 Ma) in the Yanshan range, North China. Chinese Science Bulletin, 45, 841–847.CrossRefGoogle Scholar
  131. Zhu, S., Zhu, M., Knoll, A. H., Yin, Z., Zhao, F., Sun, S., et al. (2016). Decimetre-scale multicellular eukaryotes from the 1.56-billion-year-old Gaoyuzhuang Formation in North China. Nature Communications, 7, 1–8.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Birbal Sahni Institute of PalaeosciencesLucknowIndia

Personalised recommendations