Advertisement

Geochemistry and Tectonic Setting of the Precambrian Mahakoshal and Sonakhan Greenstone Belts of the Central Indian Shield

  • H. WaniEmail author
  • M. E. A. Mondal
Chapter
Part of the Society of Earth Scientists Series book series (SESS)

Abstract

Metabasalts of the Paleoproterozoic Mahakoshal and the Late-archean to Paleoproterozoic Sonakhan greenstone belts of the Central Indian Shield have been studied for major elements and trace elements, including rare earth elements (REE) to understand the petrogenesis and tectonic environment. Metabasalts of the lower Saleemanabad Formation of the Mahakoshal belt are grouped into two types on the basis of difference in their geochemical characteristics. Type 1 metabasalts consist of relatively lower SiO2, Al2O3, K2O, and TiO2 and higher Fe2O3, MgO, CaO, and Na2O concentrations as compared to Type 2. Both types of metabasalt depict a back arc basalt character by showing enrichments in large ion lithophile elements (LILEs) and light rare earth elements (LREEs) and in some high field strength elements (HFSEs) like Zr and Hf, but show depletions in other HFSEs and heavy rare earth elements (HREEs) in comparison to the N-MORB. This is further supported by REE patterns and values of some key elemental ratios like Ba/Nb, Nb/Ta, La/Nb, Ta/Yb, Th/Yb, Eu/Eu*, Nb/Nb* which fall in the range of back-arc basalts. The lower Baghmara Formation of the Sonakhan greenstone belt consists of two distinct units of metabasalts. The lower and the upper metabasalts of the Sonakhan greenstone belt show geochemical similarity (except for the values of Zr and Hf) with the Type 1 and Type 2 metabasalts of the Mahakoshal greenstone belt respectively. The overall geochemical characteristics of the Sonakhan lower and upper metabasalts depict arc character to them. We interpret the Type 1 metabasalts of the Mahakoshal greenstone belt and the lower metabasalts of the Sonakhan greenstone belt were generated by the higher partial melting of a mantle source fluxed with lower magnitude of subduction input and relatively distal to the arc, whereas the Type 2 metabasalts of the Mahakoshal greenstone belt and the upper metabasalts of the Sonakhan greenstone belt were generated by lower partial melting at a shallow depth involving high subduction input and proximal to the arc. The present study reveals that these greenstone belts of the Central Indian Shield developed via subduction processes during Late-archean to Paleoproterozoic which in turn gives a broad hint regarding the amalgation of cratonic nuclei and the formation of Indian peninsula by accretionary tectonics.

Keywords

Central Indian Shield Precambrian Greenstone belts Geochemistry Tectonic setting 

Notes

Acknowledgements

We wish to express sincere thanks to the director and Dr. V. Balram, Emeritus Scientist Geochemistry Division, National Geophysical Research Institute (NGRI), Hyderabad and Dr. N. K. Saini, Wadia Institute of Himalayan Geology, Dehra Dun for providing laboratory facilities during chemical analysis. We are thankful to the chairman, Department of Geology, A.M.U. India for providing the facilities to carry out this work. H.W. thanks the principal, Government Amar Singh College, Srinagar, for encouragement and help during this work and thankfully acknowledges the financial support of UGC, Govt. of India in the form of a research project F.No. 40-304/2011 (SR). M.E.A.M. also highly acknowledges the financial assistance (SR/S4/ES-180/2005), by the DST Govt. of India to carry out this work. We also thank J. Mukhopadhyay, Soumen Mallick and an anonymous reviewer for their constructive comments on the manuscript.

References

  1. Campbell, I. H. (1985). The difference between Oceanic and continental theolites: A fluid dynamic explanation. Contributions to Mineralogy and Petrology, 91, 37–43.CrossRefGoogle Scholar
  2. Condie, K. C., Bobrow, D. J., & Card, K. D. (1987). Geochemistry of Precambrian mafic dykes from southern superior province of the Canadian shield. In H. Halls, W. F. Fahrig (Eds.), Mafic dyke swarms (Vol. 34, pp. 95–108). Geological Association of Canada. Special Paper.Google Scholar
  3. Cox, K. G., & Hawkesworth, C. J. (1985). Geochemical stratigraphy of the Deccan traps at Mahabaleshwar western Ghats, India with implication for open system magmatism. Journal of Petrology, 26, 355–377.CrossRefGoogle Scholar
  4. Crookshank, H. (1963). Geology of southern Bastar and Jeypore from Bailadila range to Eastern Ghats. Geological Survey of India, Memoirs, 87, 96–108.Google Scholar
  5. Das, N., Royburman, K. J., Vasta, U. S., & Mahurkar, Y. V. (1990). Sonakhan schist belt—A Precambrian granite-greenstone complex. Geological Survey of India. Special Publications, 28, 118–132.Google Scholar
  6. Das, K., Yokoyama, K., Chakraborty, P. P., & Sarkar, A. (2009). Basal tuffs and contemporaneity of the Chattisgarh and Khariar basins based on new dates and geochemistry. The Journal of Geology, 117, 88–102.CrossRefGoogle Scholar
  7. Eissen, J. P., Lefevre, C., Maillet, P., Morvan, G., & Nohara, M. (1991). Petrology and Geochemistry of the central North Figi Basin spreading centre (southwest Pacific) between 160°S and 220°S. Marine Geology, 98, 201–239.CrossRefGoogle Scholar
  8. Floyd, P. A., & Winchester, J. A. (1978). Identification and discrimination of altered and metamorphosed volcanic rocks using immobile elements. Chemical Geology, 21, 291–306.CrossRefGoogle Scholar
  9. Hollings, P., & Kerrich, R. (2004). Geochemical systematic of theolites from the 2.86 Ga Pickle crow assemblage, northwestern Ontario: Arc basalts with positive and negative Nb–Hf anomalies. Precambrian Research, 134, 1–20.CrossRefGoogle Scholar
  10. Humphris, S. E., Thompson, G., Schilling, J.-G., & Kingsley, R. A. (1985). Petrological and geochemical variations along the Mid-Atlantic Ridge between 46°S and 32°S: Influence of the Tristan da Cunha mantle plume. Geochimica et Cosmochimica Acta, 49, 1445–1464.CrossRefGoogle Scholar
  11. Jain, S. C., Nair, K. K. K., & Yedekar, D. B. (1995). Geology of the Son-Narmada-Tapti Lineament Zone in Central India. Project Crumansonata. Geological Society of America, Special Papers, 10, 1–154.Google Scholar
  12. Jain, S. C., Yedekar, D. B., & Nair, K. K. K. (1991). Central Indian Shear Zone: A major Precambrian crustal boundary. Journal of the Geological Society of India, 37, 521–548.Google Scholar
  13. Kelemen, P. B., Johnson, K. T. M., Kinzler, R. J., & Irving, A. J. (1990). High-field-strength element depletions in arc basalts due to mantle–magma interaction. Nature, 345, 521–524.CrossRefGoogle Scholar
  14. Khanna, T. C. (2013). Geochemical evidence for a paired arc-back-arc association in the Neoarchean Gadwal greenstone belt, eastern Dharwar craton, India. Current Science, 104(5), 632–640.Google Scholar
  15. Knoper, M. W., & Condie, K. C. (1988). Geochemistry and petrogenesis of Early Proterozoic amphibolites, West-Central Colorado, U.S.A. Chemical Geology, 67, 209–225.CrossRefGoogle Scholar
  16. Kumar, K. V., Rathna, K., & Leelanandam, C. (2015). Proterozoic subduction-related and continental rift-zone mafic magmas from the Eastern Ghats Belt, SE India: geochemical characteristics and mantle sources. Current Science, 108(2), 184–197.Google Scholar
  17. Laflèche, M. R., Dupuy, C., & Dostal, J. (1992). Tholeiitic volcanic rocks of the Late Archean Blake River Group, southern Abitibi greenstone belt: Origin and geodynamic implications. Canadian Journal of Earth Sciences, 29, 1448–1458.CrossRefGoogle Scholar
  18. Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B., Bateman, P., et al. (2002). Igneous rocks: A classification and glossary of terms, recommendations of the international union of geological sciences, sub-commission of the systematics of igneous rocks. Cambridge University Press.Google Scholar
  19. Mall, D. M., Reddy, P. R., & Mooney, W. D. (2008). Collision tectonics of the Central Indian Suture Zone as inferred from a deep seismic sounding study. Tectonophys, 460, 116–123.CrossRefGoogle Scholar
  20. Manikyamba, C., Ganguly, S., Santosh, M., Singh, M. R., & Saha, A. (2014). Arc-nascent back arc signature in metabasalts from the Neoarchean Jonnagiri greenstone terrane, Eastern Dharwar Craton, India. Geological Journal, 50(5), 651–660.CrossRefGoogle Scholar
  21. McDonough, W. F., Sun, S.-S., Ringwood, A. E., Jagoutz, E., & Hofmann, A. W. (1992). K, Rb and Cs in the earth and moon and the evolution of the earth’s mantle. Geochimica et Cosmochimica Acta, 56, 1001–1012.CrossRefGoogle Scholar
  22. Meert, J. G., Pandit, M. K., Pradhan, V. R., Banks, J., Sirianni, R., Stroud, M., et al. (2010). Precambrian crustal evolution of Peninsular India: A 3.0 billion year odyssey. Journal of Asian Earth Sciences, 39, 483–515.CrossRefGoogle Scholar
  23. Mitra, N. D., Ghosh, S. K., Singh, M., Sanyal, S., Srivatava, R. K., Jaggi, C. S., et al. (1989). The evolution of Son-Narmada Lineament Zone (SNLS): A synthesis of preliminary studies in Madhya Pradesh. (Abs.) Workshop. Tectonics of Narmada-Son Lineament (pp. 1–2). Bhopal.Google Scholar
  24. Mohr, P. A. (1987). Crustal contamination in mafic sheets: A summary. In H. Halls & W. F. Fahrig (Eds.), Mafic dyke swarms (Vol. 34, pp. 75–80). Geological Association of Canada. Special Paper.Google Scholar
  25. Munker, C., Gerhard Worner, G., Yogodzinski, G., & Churikova, T. (2004). Behaviour of high field strength elements in subduction zones: Constraints from Kamchatka-Aleutian arc lavas. Earth and Planetary Science Letters, 224, 275–293.CrossRefGoogle Scholar
  26. Naganjaneyulu, K., & Santosh, M. (2010). The Central India Tectonic Zone: A geophysical perspective on continental amalgamation along a Mesoproterozoic suture. Gondwana Research, 18, 547–564.CrossRefGoogle Scholar
  27. Nair, K. K. K., Jain, S. C., & Yedekar, D. B. (1995). Stratigraphy, structure and geochemistry of the Mahakoshal greenstone belt. In S. Sinha-Roy & K. R. Gupta (Eds.), Continental crust of northwestern and Central India (Vol. 31, pp. 403–433). Memoirs—Geological Society of India.Google Scholar
  28. Naqvi, S. M. (2005). Geology and evolution of the Indian plate from Hadean to Holocene −4 Ga to 4 Ka (p. 73). Capital Publishing Company, India.Google Scholar
  29. Naqvi, S. M., & Rogers, J. J. W. (1987). Precambrian geology of India. New York, USA: Oxford University Press.Google Scholar
  30. O’Hara, M. J. (1977). Geochemical evolution during fractional crystallization of a periodically filled magma chamber. Nature, 265, 503–507.CrossRefGoogle Scholar
  31. Pandey, B. K., Krishna, V., & Chabria, T. (1998). An overview of Chotanagpur Gneiss-Granulite Complex and adjoining sedimentary sequences, eastern and Central India. In International seminar on Precambrian crust in eastern and Central India 1998. Abstract volume UNESCO-IUGS-IGCP (Vol. 368, pp. 131–135).Google Scholar
  32. Patranabis-Deb, S., Bickford, M. E., Hill, B., Chaudhuri, A. K., & Basu, A. (2007). SHRIMP ages of zircon in the upper most tuff in Chattisgarh Basin in Central India require ~500-Ma adjustment in Indian Proterozoic stratigraphy. The Journal of Geology, 115, 407–415.CrossRefGoogle Scholar
  33. Pearce, J. (1982). Trace element characteristics of lavas from the destructive plate boundaries. In R. S. Trorpe (Ed.), Andesites (pp. 525–548). Wiley.Google Scholar
  34. Pearce, J. A. (1983). Role of sub-continental lithosphere in magma genesis at active continental margins. In C. J. Hawkesworth & M. J. Norry (Eds.), Continental basalts and Mantle Xenoliths (pp. 230–249). Natwich, UK: Shiva.Google Scholar
  35. Pearce, J. (2003) Supra-subduction zone ophiolites: The search for modern analogues. In Dilek, Y., & Newcomb, S. (Eds.), Ophiolite concept and the evolution of geological thought (Vol. 373, pp. 269–293). Geological Society of America, Special Papers.CrossRefGoogle Scholar
  36. Pearce, J. A. (2008). Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100, 14–48.CrossRefGoogle Scholar
  37. Pearce, J. A., & Cann, J. R. (1973). Tectonic setting of basic volcanic rocks determined suing trace element analyses. Earth and Planetary Science Letters, 19, 290–300.CrossRefGoogle Scholar
  38. Pearce, J. A., & Peate, D. W. (1995). Tectonic implications of the composition of volcanic arc lavas. Annual Review of Earth and Planetary Sciences, 23, 251–285.CrossRefGoogle Scholar
  39. Pearce, J. A., & Stern, R. J. (2006). Origin of back-arc basin magmas: Trace element and isotope perspectives. In Geophysical monograph series (Vol. 166). American Geophysical Union.CrossRefGoogle Scholar
  40. Polat, A., Hofmann, A. W., & Rosing, M. T. (2002). Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greenstone belt, west Greenland: Geochemical evidence for intra-oceanic subduction zone processes in the early earth. Chemical Geology, 184, 231–254.CrossRefGoogle Scholar
  41. Pollard, P. J., Millburn, D., Taylor, R. G., & Cuff, C. (1983). Mineralogical and textural modifications in Granites associated with tin mineralisation, Herberton—Mt Garnet Tinfield, Queensland. In Permian Geology of Queensland, Brisbane (pp. 413–430). Geological Society of Australia, Queensland Division.Google Scholar
  42. Prasad, B. (1990). Observations in the Precambrian geology of Central India vis a vis adjoining region. Geological Survey of India. Special Publications, 28, 181–198.Google Scholar
  43. Ramakrishnan, M. (1990). Crustal development in Southern Bastar, Central Indian craton. Geological Survey of India. Special Publications, 28, 44–66.Google Scholar
  44. Rogers, J. J. W., & Santosh, M. (2002). Configuration of Columbia, a Mesoproterozoic supercontinent. Gondwana Research, 5, 5–22.CrossRefGoogle Scholar
  45. Rollinson, H. R. (1993). Using geochemical data: Evaluation, presentation, interpretation (p. 351). New York: Wiley.Google Scholar
  46. Roy, P., Balaram, V., Kumar, A., Satyanarayanan, M., & Rao, G. (2007). New REE and trace element data on two international kimberlitic reference materials by ICP-MS. Journal of Geostandards and Geoanalytical Research, 31, 261–273.CrossRefGoogle Scholar
  47. Roy, A., & Bandyopadhyay, B. K. (1990). Tectonic and structural pattern of the Mahakoshal belt of Central India. A discussion. In Precambrian of Central India (Vol. 28, pp. 226–340). Geological Survey of India. Special Publications.Google Scholar
  48. Roy, A., & Chakraborti, K. (2008). Precambrian mafic-ultramafic magmatism in Central Indian Suture Zone. Journal of the Geological Society of India, 72, 123–140.Google Scholar
  49. Roy, A., & Devarajan, M. K. (2000). A reappraisal of the Stratigraphy and tectonics of the Paleoproterozoic Mahakoshal supracrustal belt, Central India (Vol. 57, pp. 79–97). Geological Survey of India. Special Publications.Google Scholar
  50. Roy, A., & Prasad, H. M. (2001). Precambrian of Central India: A possible Tectonic model. Geological Survey of India. Special Publications, 64, 177–197.Google Scholar
  51. Saha, D., Deb, G. K., Dutta, S. (2000). Granite-greenstone relationship in the Sonakhan belt, Raipur district, Central India (Vol. 57, pp. 67–78). Geological Survey of India. Special Publications.Google Scholar
  52. Saini, N. K., Mukherjee, P. K., Rathi, M. S., Khanna, P. P., & Purohit, K. K. (1998). A new geochemical reference sample of granite (DG-H) from Dalhousie, Himachal Himalaya. Journal of Geological Society of India, 52, 603–606.Google Scholar
  53. Sarkar, A., Paul, D. K., & Potts, P. J. (1995). Geochronology and geochemistry of the Mid-Archaean trondhjemitic gneiss from the Bundelkhand Craton, Central India. In A. K. Saha (Ed.), Recent researches in geology (Vol. 16, pp. 76–92). Hindustan Publishing Corporation.Google Scholar
  54. Saunders, A. D., & Tarney, J. (1979). The geochemistry of basalts from the back arc spreading center in the East Scotia Sea. Geochimica et Cosmochimica Acta, 43, 555–572.CrossRefGoogle Scholar
  55. Sinton, J. M., Ford, L. L., Chappel, B., & McCulloch, M. T. (2003). Magma genesis and mantle heterogeneity in the Manus back-arc basin, Papua New Guinea. Journal of Petrology, 44, 159–195.CrossRefGoogle Scholar
  56. Srivastava, R. K., Ellam, R. M., & Gautam, G. C. (2009). Sr–Nd isotope geochemistry of the early Precambrian sub-alkaline mafic igneous rocks from the southern Bastar craton, Central India. Mineralogy and Petrology, 96, 71–79.CrossRefGoogle Scholar
  57. Srivastava, R. K., Singh, R. K., & Vennrma, S. P. (2004). Neoarchean mafic volcanic rocks from the southern Bastar greenstone belt, Central India: Petrological and tectonic significance. Precambrian Research, 131, 305–322.CrossRefGoogle Scholar
  58. Stein, H. J., Hannah, J. L., Zimmerman, A., Markey, R. J., Sarkar, S. C., & Pal, A. B. (2004). A 2.5 Ga porphyry Cu–Mo–Au deposit at Malanjkhand, Central India: Implications for late Archaean continental assembly. Precambrian Research, 134, 189–226.CrossRefGoogle Scholar
  59. Sun, S. S. (1980). Lead isotope study of young volcanic rocks from mid-ocean ridges, ocean island and island arcs. Philosophical Transactions of the Royal Society of London. Series A, 297, 409–445.CrossRefGoogle Scholar
  60. Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In A. D. Saunder & M. J. Norry (Eds.), Magmatism in oceanic basins (Vol. 42, pp. 313–345). Geological Society, London, Special Publications.CrossRefGoogle Scholar
  61. Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution. Oxford, UK: Blackwell.Google Scholar
  62. Taylor, R. G., & Pollard, P. J. (1988). Pervasive hydrothermal alteration in tin bearing granites and implications for the evolution of ore-bearing fluids. In R. P. Taylor & D. F. Strong (Eds.), Recent advances in the geology of the granite related mineral deposits (pp. 86–95). Quebec: Canadian Institute of Mining and Metallurgy.Google Scholar
  63. Thirlwall, M. F., Smith, T. E., Graham, A. M., Theodorou, N., Hollings, P., Davidson, J. P., et al. (1994). High field strength element anomalies in arc lavas: Source or process? Journal of Petrology, 35, 819–838.CrossRefGoogle Scholar
  64. Thompson, R. N., Morrison, M. A., Hendry, G. L., & Parray, S. J. (1984). An assessment of the relative roles of crust and mantle in magma genesis: An element approach. Philosophical Transactions of the Royal Society of London. Series A, 310, 549–590.CrossRefGoogle Scholar
  65. Weaver, B. L., & Tarney, J. (1984). Major and trace element composition of the continental lithosphere. Physics and Chemistry of the Earth, 15, 39–68.CrossRefGoogle Scholar
  66. Wood, D. A. (1979). A variably veined suboceanic upper mantle: Genetic significance for mid-ocean ridge basalts from geochemical evidence. Geology, 7, 499–503.CrossRefGoogle Scholar
  67. Zhao, G., Sun, M., Wilde, S. A., & Li, S. Z. (2004). A Paleo-Mesoproterozoic supercontinent: Assembly, growth and breakup. Earth-Science Reviews, 67, 91–123.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of GeologyGovernment Amar Singh College SrinagarSrinagarIndia
  2. 2.Department of GeologyAligarh Muslim UniversityAligarhIndia

Personalised recommendations