Skip to main content

Geochemistry and Tectonic Setting of the Precambrian Mahakoshal and Sonakhan Greenstone Belts of the Central Indian Shield

  • Chapter
  • First Online:
Geological Evolution of the Precambrian Indian Shield

Part of the book series: Society of Earth Scientists Series ((SESS))

Abstract

Metabasalts of the Paleoproterozoic Mahakoshal and the Late-archean to Paleoproterozoic Sonakhan greenstone belts of the Central Indian Shield have been studied for major elements and trace elements, including rare earth elements (REE) to understand the petrogenesis and tectonic environment. Metabasalts of the lower Saleemanabad Formation of the Mahakoshal belt are grouped into two types on the basis of difference in their geochemical characteristics. Type 1 metabasalts consist of relatively lower SiO2, Al2O3, K2O, and TiO2 and higher Fe2O3, MgO, CaO, and Na2O concentrations as compared to Type 2. Both types of metabasalt depict a back arc basalt character by showing enrichments in large ion lithophile elements (LILEs) and light rare earth elements (LREEs) and in some high field strength elements (HFSEs) like Zr and Hf, but show depletions in other HFSEs and heavy rare earth elements (HREEs) in comparison to the N-MORB. This is further supported by REE patterns and values of some key elemental ratios like Ba/Nb, Nb/Ta, La/Nb, Ta/Yb, Th/Yb, Eu/Eu*, Nb/Nb* which fall in the range of back-arc basalts. The lower Baghmara Formation of the Sonakhan greenstone belt consists of two distinct units of metabasalts. The lower and the upper metabasalts of the Sonakhan greenstone belt show geochemical similarity (except for the values of Zr and Hf) with the Type 1 and Type 2 metabasalts of the Mahakoshal greenstone belt respectively. The overall geochemical characteristics of the Sonakhan lower and upper metabasalts depict arc character to them. We interpret the Type 1 metabasalts of the Mahakoshal greenstone belt and the lower metabasalts of the Sonakhan greenstone belt were generated by the higher partial melting of a mantle source fluxed with lower magnitude of subduction input and relatively distal to the arc, whereas the Type 2 metabasalts of the Mahakoshal greenstone belt and the upper metabasalts of the Sonakhan greenstone belt were generated by lower partial melting at a shallow depth involving high subduction input and proximal to the arc. The present study reveals that these greenstone belts of the Central Indian Shield developed via subduction processes during Late-archean to Paleoproterozoic which in turn gives a broad hint regarding the amalgation of cratonic nuclei and the formation of Indian peninsula by accretionary tectonics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Campbell, I. H. (1985). The difference between Oceanic and continental theolites: A fluid dynamic explanation. Contributions to Mineralogy and Petrology, 91, 37–43.

    Article  Google Scholar 

  • Condie, K. C., Bobrow, D. J., & Card, K. D. (1987). Geochemistry of Precambrian mafic dykes from southern superior province of the Canadian shield. In H. Halls, W. F. Fahrig (Eds.), Mafic dyke swarms (Vol. 34, pp. 95–108). Geological Association of Canada. Special Paper.

    Google Scholar 

  • Cox, K. G., & Hawkesworth, C. J. (1985). Geochemical stratigraphy of the Deccan traps at Mahabaleshwar western Ghats, India with implication for open system magmatism. Journal of Petrology, 26, 355–377.

    Article  Google Scholar 

  • Crookshank, H. (1963). Geology of southern Bastar and Jeypore from Bailadila range to Eastern Ghats. Geological Survey of India, Memoirs, 87, 96–108.

    Google Scholar 

  • Das, N., Royburman, K. J., Vasta, U. S., & Mahurkar, Y. V. (1990). Sonakhan schist belt—A Precambrian granite-greenstone complex. Geological Survey of India. Special Publications, 28, 118–132.

    Google Scholar 

  • Das, K., Yokoyama, K., Chakraborty, P. P., & Sarkar, A. (2009). Basal tuffs and contemporaneity of the Chattisgarh and Khariar basins based on new dates and geochemistry. The Journal of Geology, 117, 88–102.

    Article  Google Scholar 

  • Eissen, J. P., Lefevre, C., Maillet, P., Morvan, G., & Nohara, M. (1991). Petrology and Geochemistry of the central North Figi Basin spreading centre (southwest Pacific) between 160°S and 220°S. Marine Geology, 98, 201–239.

    Article  Google Scholar 

  • Floyd, P. A., & Winchester, J. A. (1978). Identification and discrimination of altered and metamorphosed volcanic rocks using immobile elements. Chemical Geology, 21, 291–306.

    Article  Google Scholar 

  • Hollings, P., & Kerrich, R. (2004). Geochemical systematic of theolites from the 2.86 Ga Pickle crow assemblage, northwestern Ontario: Arc basalts with positive and negative Nb–Hf anomalies. Precambrian Research, 134, 1–20.

    Article  Google Scholar 

  • Humphris, S. E., Thompson, G., Schilling, J.-G., & Kingsley, R. A. (1985). Petrological and geochemical variations along the Mid-Atlantic Ridge between 46°S and 32°S: Influence of the Tristan da Cunha mantle plume. Geochimica et Cosmochimica Acta, 49, 1445–1464.

    Article  Google Scholar 

  • Jain, S. C., Nair, K. K. K., & Yedekar, D. B. (1995). Geology of the Son-Narmada-Tapti Lineament Zone in Central India. Project Crumansonata. Geological Society of America, Special Papers, 10, 1–154.

    Google Scholar 

  • Jain, S. C., Yedekar, D. B., & Nair, K. K. K. (1991). Central Indian Shear Zone: A major Precambrian crustal boundary. Journal of the Geological Society of India, 37, 521–548.

    Google Scholar 

  • Kelemen, P. B., Johnson, K. T. M., Kinzler, R. J., & Irving, A. J. (1990). High-field-strength element depletions in arc basalts due to mantle–magma interaction. Nature, 345, 521–524.

    Article  Google Scholar 

  • Khanna, T. C. (2013). Geochemical evidence for a paired arc-back-arc association in the Neoarchean Gadwal greenstone belt, eastern Dharwar craton, India. Current Science, 104(5), 632–640.

    Google Scholar 

  • Knoper, M. W., & Condie, K. C. (1988). Geochemistry and petrogenesis of Early Proterozoic amphibolites, West-Central Colorado, U.S.A. Chemical Geology, 67, 209–225.

    Article  Google Scholar 

  • Kumar, K. V., Rathna, K., & Leelanandam, C. (2015). Proterozoic subduction-related and continental rift-zone mafic magmas from the Eastern Ghats Belt, SE India: geochemical characteristics and mantle sources. Current Science, 108(2), 184–197.

    Google Scholar 

  • Laflèche, M. R., Dupuy, C., & Dostal, J. (1992). Tholeiitic volcanic rocks of the Late Archean Blake River Group, southern Abitibi greenstone belt: Origin and geodynamic implications. Canadian Journal of Earth Sciences, 29, 1448–1458.

    Article  Google Scholar 

  • Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B., Bateman, P., et al. (2002). Igneous rocks: A classification and glossary of terms, recommendations of the international union of geological sciences, sub-commission of the systematics of igneous rocks. Cambridge University Press.

    Google Scholar 

  • Mall, D. M., Reddy, P. R., & Mooney, W. D. (2008). Collision tectonics of the Central Indian Suture Zone as inferred from a deep seismic sounding study. Tectonophys, 460, 116–123.

    Article  Google Scholar 

  • Manikyamba, C., Ganguly, S., Santosh, M., Singh, M. R., & Saha, A. (2014). Arc-nascent back arc signature in metabasalts from the Neoarchean Jonnagiri greenstone terrane, Eastern Dharwar Craton, India. Geological Journal, 50(5), 651–660.

    Article  Google Scholar 

  • McDonough, W. F., Sun, S.-S., Ringwood, A. E., Jagoutz, E., & Hofmann, A. W. (1992). K, Rb and Cs in the earth and moon and the evolution of the earth’s mantle. Geochimica et Cosmochimica Acta, 56, 1001–1012.

    Article  Google Scholar 

  • Meert, J. G., Pandit, M. K., Pradhan, V. R., Banks, J., Sirianni, R., Stroud, M., et al. (2010). Precambrian crustal evolution of Peninsular India: A 3.0 billion year odyssey. Journal of Asian Earth Sciences, 39, 483–515.

    Article  Google Scholar 

  • Mitra, N. D., Ghosh, S. K., Singh, M., Sanyal, S., Srivatava, R. K., Jaggi, C. S., et al. (1989). The evolution of Son-Narmada Lineament Zone (SNLS): A synthesis of preliminary studies in Madhya Pradesh. (Abs.) Workshop. Tectonics of Narmada-Son Lineament (pp. 1–2). Bhopal.

    Google Scholar 

  • Mohr, P. A. (1987). Crustal contamination in mafic sheets: A summary. In H. Halls & W. F. Fahrig (Eds.), Mafic dyke swarms (Vol. 34, pp. 75–80). Geological Association of Canada. Special Paper.

    Google Scholar 

  • Munker, C., Gerhard Worner, G., Yogodzinski, G., & Churikova, T. (2004). Behaviour of high field strength elements in subduction zones: Constraints from Kamchatka-Aleutian arc lavas. Earth and Planetary Science Letters, 224, 275–293.

    Article  Google Scholar 

  • Naganjaneyulu, K., & Santosh, M. (2010). The Central India Tectonic Zone: A geophysical perspective on continental amalgamation along a Mesoproterozoic suture. Gondwana Research, 18, 547–564.

    Article  Google Scholar 

  • Nair, K. K. K., Jain, S. C., & Yedekar, D. B. (1995). Stratigraphy, structure and geochemistry of the Mahakoshal greenstone belt. In S. Sinha-Roy & K. R. Gupta (Eds.), Continental crust of northwestern and Central India (Vol. 31, pp. 403–433). Memoirs—Geological Society of India.

    Google Scholar 

  • Naqvi, S. M. (2005). Geology and evolution of the Indian plate from Hadean to Holocene −4 Ga to 4 Ka (p. 73). Capital Publishing Company, India.

    Google Scholar 

  • Naqvi, S. M., & Rogers, J. J. W. (1987). Precambrian geology of India. New York, USA: Oxford University Press.

    Google Scholar 

  • O’Hara, M. J. (1977). Geochemical evolution during fractional crystallization of a periodically filled magma chamber. Nature, 265, 503–507.

    Article  Google Scholar 

  • Pandey, B. K., Krishna, V., & Chabria, T. (1998). An overview of Chotanagpur Gneiss-Granulite Complex and adjoining sedimentary sequences, eastern and Central India. In International seminar on Precambrian crust in eastern and Central India 1998. Abstract volume UNESCO-IUGS-IGCP (Vol. 368, pp. 131–135).

    Google Scholar 

  • Patranabis-Deb, S., Bickford, M. E., Hill, B., Chaudhuri, A. K., & Basu, A. (2007). SHRIMP ages of zircon in the upper most tuff in Chattisgarh Basin in Central India require ~500-Ma adjustment in Indian Proterozoic stratigraphy. The Journal of Geology, 115, 407–415.

    Article  Google Scholar 

  • Pearce, J. (1982). Trace element characteristics of lavas from the destructive plate boundaries. In R. S. Trorpe (Ed.), Andesites (pp. 525–548). Wiley.

    Google Scholar 

  • Pearce, J. A. (1983). Role of sub-continental lithosphere in magma genesis at active continental margins. In C. J. Hawkesworth & M. J. Norry (Eds.), Continental basalts and Mantle Xenoliths (pp. 230–249). Natwich, UK: Shiva.

    Google Scholar 

  • Pearce, J. (2003) Supra-subduction zone ophiolites: The search for modern analogues. In Dilek, Y., & Newcomb, S. (Eds.), Ophiolite concept and the evolution of geological thought (Vol. 373, pp. 269–293). Geological Society of America, Special Papers.

    Chapter  Google Scholar 

  • Pearce, J. A. (2008). Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100, 14–48.

    Article  Google Scholar 

  • Pearce, J. A., & Cann, J. R. (1973). Tectonic setting of basic volcanic rocks determined suing trace element analyses. Earth and Planetary Science Letters, 19, 290–300.

    Article  Google Scholar 

  • Pearce, J. A., & Peate, D. W. (1995). Tectonic implications of the composition of volcanic arc lavas. Annual Review of Earth and Planetary Sciences, 23, 251–285.

    Article  Google Scholar 

  • Pearce, J. A., & Stern, R. J. (2006). Origin of back-arc basin magmas: Trace element and isotope perspectives. In Geophysical monograph series (Vol. 166). American Geophysical Union.

    Chapter  Google Scholar 

  • Polat, A., Hofmann, A. W., & Rosing, M. T. (2002). Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greenstone belt, west Greenland: Geochemical evidence for intra-oceanic subduction zone processes in the early earth. Chemical Geology, 184, 231–254.

    Article  Google Scholar 

  • Pollard, P. J., Millburn, D., Taylor, R. G., & Cuff, C. (1983). Mineralogical and textural modifications in Granites associated with tin mineralisation, Herberton—Mt Garnet Tinfield, Queensland. In Permian Geology of Queensland, Brisbane (pp. 413–430). Geological Society of Australia, Queensland Division.

    Google Scholar 

  • Prasad, B. (1990). Observations in the Precambrian geology of Central India vis a vis adjoining region. Geological Survey of India. Special Publications, 28, 181–198.

    Google Scholar 

  • Ramakrishnan, M. (1990). Crustal development in Southern Bastar, Central Indian craton. Geological Survey of India. Special Publications, 28, 44–66.

    Google Scholar 

  • Rogers, J. J. W., & Santosh, M. (2002). Configuration of Columbia, a Mesoproterozoic supercontinent. Gondwana Research, 5, 5–22.

    Article  Google Scholar 

  • Rollinson, H. R. (1993). Using geochemical data: Evaluation, presentation, interpretation (p. 351). New York: Wiley.

    Google Scholar 

  • Roy, P., Balaram, V., Kumar, A., Satyanarayanan, M., & Rao, G. (2007). New REE and trace element data on two international kimberlitic reference materials by ICP-MS. Journal of Geostandards and Geoanalytical Research, 31, 261–273.

    Article  Google Scholar 

  • Roy, A., & Bandyopadhyay, B. K. (1990). Tectonic and structural pattern of the Mahakoshal belt of Central India. A discussion. In Precambrian of Central India (Vol. 28, pp. 226–340). Geological Survey of India. Special Publications.

    Google Scholar 

  • Roy, A., & Chakraborti, K. (2008). Precambrian mafic-ultramafic magmatism in Central Indian Suture Zone. Journal of the Geological Society of India, 72, 123–140.

    Google Scholar 

  • Roy, A., & Devarajan, M. K. (2000). A reappraisal of the Stratigraphy and tectonics of the Paleoproterozoic Mahakoshal supracrustal belt, Central India (Vol. 57, pp. 79–97). Geological Survey of India. Special Publications.

    Google Scholar 

  • Roy, A., & Prasad, H. M. (2001). Precambrian of Central India: A possible Tectonic model. Geological Survey of India. Special Publications, 64, 177–197.

    Google Scholar 

  • Saha, D., Deb, G. K., Dutta, S. (2000). Granite-greenstone relationship in the Sonakhan belt, Raipur district, Central India (Vol. 57, pp. 67–78). Geological Survey of India. Special Publications.

    Google Scholar 

  • Saini, N. K., Mukherjee, P. K., Rathi, M. S., Khanna, P. P., & Purohit, K. K. (1998). A new geochemical reference sample of granite (DG-H) from Dalhousie, Himachal Himalaya. Journal of Geological Society of India, 52, 603–606.

    Google Scholar 

  • Sarkar, A., Paul, D. K., & Potts, P. J. (1995). Geochronology and geochemistry of the Mid-Archaean trondhjemitic gneiss from the Bundelkhand Craton, Central India. In A. K. Saha (Ed.), Recent researches in geology (Vol. 16, pp. 76–92). Hindustan Publishing Corporation.

    Google Scholar 

  • Saunders, A. D., & Tarney, J. (1979). The geochemistry of basalts from the back arc spreading center in the East Scotia Sea. Geochimica et Cosmochimica Acta, 43, 555–572.

    Article  Google Scholar 

  • Sinton, J. M., Ford, L. L., Chappel, B., & McCulloch, M. T. (2003). Magma genesis and mantle heterogeneity in the Manus back-arc basin, Papua New Guinea. Journal of Petrology, 44, 159–195.

    Article  Google Scholar 

  • Srivastava, R. K., Ellam, R. M., & Gautam, G. C. (2009). Sr–Nd isotope geochemistry of the early Precambrian sub-alkaline mafic igneous rocks from the southern Bastar craton, Central India. Mineralogy and Petrology, 96, 71–79.

    Article  Google Scholar 

  • Srivastava, R. K., Singh, R. K., & Vennrma, S. P. (2004). Neoarchean mafic volcanic rocks from the southern Bastar greenstone belt, Central India: Petrological and tectonic significance. Precambrian Research, 131, 305–322.

    Article  Google Scholar 

  • Stein, H. J., Hannah, J. L., Zimmerman, A., Markey, R. J., Sarkar, S. C., & Pal, A. B. (2004). A 2.5 Ga porphyry Cu–Mo–Au deposit at Malanjkhand, Central India: Implications for late Archaean continental assembly. Precambrian Research, 134, 189–226.

    Article  Google Scholar 

  • Sun, S. S. (1980). Lead isotope study of young volcanic rocks from mid-ocean ridges, ocean island and island arcs. Philosophical Transactions of the Royal Society of London. Series A, 297, 409–445.

    Article  Google Scholar 

  • Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In A. D. Saunder & M. J. Norry (Eds.), Magmatism in oceanic basins (Vol. 42, pp. 313–345). Geological Society, London, Special Publications.

    Article  Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution. Oxford, UK: Blackwell.

    Google Scholar 

  • Taylor, R. G., & Pollard, P. J. (1988). Pervasive hydrothermal alteration in tin bearing granites and implications for the evolution of ore-bearing fluids. In R. P. Taylor & D. F. Strong (Eds.), Recent advances in the geology of the granite related mineral deposits (pp. 86–95). Quebec: Canadian Institute of Mining and Metallurgy.

    Google Scholar 

  • Thirlwall, M. F., Smith, T. E., Graham, A. M., Theodorou, N., Hollings, P., Davidson, J. P., et al. (1994). High field strength element anomalies in arc lavas: Source or process? Journal of Petrology, 35, 819–838.

    Article  Google Scholar 

  • Thompson, R. N., Morrison, M. A., Hendry, G. L., & Parray, S. J. (1984). An assessment of the relative roles of crust and mantle in magma genesis: An element approach. Philosophical Transactions of the Royal Society of London. Series A, 310, 549–590.

    Article  Google Scholar 

  • Weaver, B. L., & Tarney, J. (1984). Major and trace element composition of the continental lithosphere. Physics and Chemistry of the Earth, 15, 39–68.

    Article  Google Scholar 

  • Wood, D. A. (1979). A variably veined suboceanic upper mantle: Genetic significance for mid-ocean ridge basalts from geochemical evidence. Geology, 7, 499–503.

    Article  Google Scholar 

  • Zhao, G., Sun, M., Wilde, S. A., & Li, S. Z. (2004). A Paleo-Mesoproterozoic supercontinent: Assembly, growth and breakup. Earth-Science Reviews, 67, 91–123.

    Article  Google Scholar 

Download references

Acknowledgements

We wish to express sincere thanks to the director and Dr. V. Balram, Emeritus Scientist Geochemistry Division, National Geophysical Research Institute (NGRI), Hyderabad and Dr. N. K. Saini, Wadia Institute of Himalayan Geology, Dehra Dun for providing laboratory facilities during chemical analysis. We are thankful to the chairman, Department of Geology, A.M.U. India for providing the facilities to carry out this work. H.W. thanks the principal, Government Amar Singh College, Srinagar, for encouragement and help during this work and thankfully acknowledges the financial support of UGC, Govt. of India in the form of a research project F.No. 40-304/2011 (SR). M.E.A.M. also highly acknowledges the financial assistance (SR/S4/ES-180/2005), by the DST Govt. of India to carry out this work. We also thank J. Mukhopadhyay, Soumen Mallick and an anonymous reviewer for their constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Wani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wani, H., Mondal, M.E.A. (2019). Geochemistry and Tectonic Setting of the Precambrian Mahakoshal and Sonakhan Greenstone Belts of the Central Indian Shield. In: Mondal, M. (eds) Geological Evolution of the Precambrian Indian Shield. Society of Earth Scientists Series. Springer, Cham. https://doi.org/10.1007/978-3-319-89698-4_26

Download citation

Publish with us

Policies and ethics