Skip to main content

High-Field Strength Elements Geochemistry of Granite and Co-genetic Pegmatites of the Kawadgaon Area, Bastar Craton, Central India

  • Chapter
  • First Online:
Geological Evolution of the Precambrian Indian Shield

Abstract

A geochemical study on granite and co-genetic pegmatites of the Kawadgaon area, Bastar craton, Central India reveals varying levels of enrichments of high-field strength elements (HFSEs) in both. However, granite has much higher contents of U, Th, Y, Zr, and rare-earth elements (REEs), whereas co-genetic pegmatites reveal anomalously high Nb and Ta contents. The data indicates a preferential enrichment of REEs in granite (av. 198 ppm). The chondrite-normalised REE plots of granite and co-genetic pegmatites show strongly fractionated patterns. Strong fractionation between light REE (LREE) and heavy REE (HREE) is brought out by high (LREE/HREE)N, (La/Lu)N, and (La/Yb)N ratios in granite and co-genetic pegmatites. Among LREEs, a strong fractionation is displayed by very high (La/Sm)N ratio (av. 5.69) in granite. Marked negative Eu anomalies in studied felsic rocks are attributed to fractionation of plagioclase feldspar. High La/Sc ratio in granite and decrease in Hf/Zr ratio from granite to co-genetic pegmatites are apparent, which are coherent with their behaviour in the sequence of fractionated felsic rocks. A preponderance of Nb and Ta in co-genetic pegmatites is due to their formation from still more fractionated melt leading to higher concentrations of these elements owing to their increased diffusion consequent to enrichment of fluxing components such as B, P, F, H2O in the residual pegmatitic fluids. The fertile nature of the investigated felsic bodies of the Kawadgaon area for rare-metals is revealed by anomalous abundances of Nb and Ta in them. A study of HFSEs abundances in felsic bodies of the region will help in exploration of rare metals and rare earths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altherr, R., Holl, A., Hegner, E., Langer, C., & Kreuzer, H. (2000). High-potassium, calc-alkaline I-type plutonism in the Europian Variscides: Northern Vosges (France) and northern Schwarzwald (Germany). Lithos, 50, 51–73.

    Article  Google Scholar 

  • Bandyopadhyay, B. K., Bhoskar, K. G., Ramachandra, H. M., Roy, A., Khadse, V. K., Mohan, M., et al. (1990). Recent geochronological studies in parts of the Precambrian of Central India. In Precambrian of Central India (Vol. 28, pp. 199–210). Geological Survey of India (Special Publications).

    Google Scholar 

  • Boynton, W. V. (1984). Geochemistry of the rare earth elements: Meteorite studies. In P. Henderson (Ed.), Rare earth element geochemistry: Developments in geochemistry (2nd Ed., pp. 63–114). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Breaks, F. W., Selway, J. B., & Tindle, A. G. (2005). Fertile peraluminous granites and related rare-element pegmatites, Superior Province of Ontario. In R. L. Linnen & I. M. Samson (Eds.), Rare-element geochemistry and mineral deposits (GAC Short Course Notes 17, pp. 87–125).

    Google Scholar 

  • Calvin, F. M. (1985). Are strongly peraluminous magma derived from pelitic sedimentary source? Journal of Geology, 93, 673–689.

    Article  Google Scholar 

  • Cerny, P., & Meintzer, R. E. (1985). Fertile granite in the Archaean and Proterozoic fields of rare-element pegmatites; Crustal environment, geochemistry and petrogenetic relationships. In R. P. Taylor & D. F. Strong (Eds.), Recent advances in the geology of granite-related mineral deposits (Special Vol. 39, pp. 170–207). The Canadian Institute of Mining and Metallurgy.

    Google Scholar 

  • Chappell, B. W., & White, A. J. R. (1974). Two contrasting granite types. Pacific Geology, 8, 173–174.

    Google Scholar 

  • Chappell, B. W., & White, A. J. R. (1992). I- and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83, 1–26.

    Article  Google Scholar 

  • Christiansen, E. H., Stuckless, J. S., Funkhouser-Marolf, M. J., & Howell, K. H. (1988). Petrogenesis of rare-metal granites from depleted crustal sources: An example from the Cenozoic of Western Utah, U.S.A. In R. P. Taylor & D. F. Strong (Eds.), Recent advances in the geology of granite-related mineral deposits (Special Vol. 39, pp. 307–321). The Canadian Institute of Mining and Metallurgy.

    Google Scholar 

  • Cox, K. G., Bell, J. D., & Pankhurst, R. J. (1979). The interpretation of igneous rocks. London: George, Allen and Unwin.

    Book  Google Scholar 

  • Crookshank, H. (1963). Geology of southern Bastar and Jeypore from Bailadila ranre to Eastern Ghats. Geological Survey of India, 87, 1–149.

    Google Scholar 

  • Cullers, R. L., Basu, A., & Suttner, L. J. (1988). Geochemical signatures of provenance in sand-mixed material in soils and stream sediments near the Tobacco root batholiths, Montana, USA. Chemical Geology, 70, 335–348.

    Article  Google Scholar 

  • Cuney, M., & Kyser, K. (2009). Deposits related to magmatic differentiation. In M. Cuney & K. Kyser (Eds.), Short Course Series, Vol. 39. Recent and not-so-recent developments in uranium deposits and implications for exploration (pp. 57–77). Mineralogical Association of Canada, Society for Geology Applied to Mineral Deposits.

    Google Scholar 

  • Linnen, R. L., Van Lichtervelde, M., & Cerny, P. (2012). Granitic pegmatites as sources of strategic metals. Elements, 8, 275–280.

    Article  Google Scholar 

  • London, D. (2008). Pegmatites. Canadian Mineralogist, 10, 1–368.

    Google Scholar 

  • London, D., & Morgan, G. B., VI. (2012). The pegmatite puzzle. Elements, 8, 263–268.

    Article  Google Scholar 

  • Majumdar, D., & Dutta, P. (2014). Rera-earth element abundances in some A-type Pan-African granitoids of Karbi Hills, North East India. Current Science, 107(12), 2023–2029.

    Google Scholar 

  • Mason, B. (1966). Principles of geochemistry (3rd Ed., 329p). New York: Wiley.

    Google Scholar 

  • Mishra, K. S., Bagora, S., & Vijayanand, B. (2007). Rare metal mineralization around Kotwalpara-Kawargaon area, Dantewada district, Chhattisgarh. Gondwana Geological Magazine, 10, 209–214.

    Google Scholar 

  • Naqvi, S. M., Uday Raj, B., Subba Rao, D. V., Manikyamba, C., Nirmal Charan, S., Balaram, V., et al. (2002). Geology and geochemistry of arenite-quartz wacke from the Late Archaean Sandur schist belt-implications for provenance and accretion processes. Precambrain Research, 114, 177–197.

    Article  Google Scholar 

  • Ramakrishnan, M. (1990). Crustal development in southern Bastar, central Indian craton. In Precambrian of central India (Vol. 28, pp. 44–66). Geological Survey of India.

    Google Scholar 

  • Ramesh Babu, P. V., Pandey, B. K., & Dhana Raju, R. (1993). Rb-Sr ages on the granite and pegmatitic minerals from Bastar-Koraput pegmatite belt, Madhya Pradesh and Orissa, India. Journal of Geological Society of India, 42, 33–38.

    Google Scholar 

  • Ramesh Babu, P. V. (1999). Rare metal and rare earth pegmatites of central India. Exploration and Research for Atomic Minerals, 12, 7–52.

    Google Scholar 

  • Rub, A. K., Rub, M. G., Ashikhmina, N. A., & Chistyakova, N. I. (1994). Rare metal granites and associated mineralization of the Tigrin deposit, central Sikhote-Alin, Russia. International Geological Review, 36, 484–502.

    Article  Google Scholar 

  • Sarkar, G., Paul, D. K., DeLaeter, J. R., McNaughton, N. J., & Mishra, V. P. (1990). A geochemical and Pb, Sr isotopic study of the evolution of granite-gneisses from the Bastar craton, central India. Journal of Geological Society of India, 35(5), 480–496.

    Google Scholar 

  • Shand, S. J. (1927). Eruptive rocks (360p). New York: D. Van Nostrand Company.

    Google Scholar 

  • Singh, Y. (1991). Annual report for the field season 1990–91 (Unpublished Report). Atomic Minerals Directorate for Exploration and Research, Hyderabad.

    Google Scholar 

  • Singh, Y. (1998). Early Proterozoic rare metal and tin pegmatites near Kawadgaon, Bastar, M.P: An example of vertical pegmatite zonation. Journal of Geological Society of India, 51, 175–182.

    Google Scholar 

  • Singh, Y. (1999). Lithostratigraphic correlation of andalusite quartzites above the early Proterozoic granites intrusive into Bengpal and Sukma Groups in Gadapal-Jaram area, South Bastar, Madhya Pradesh. Gondwana Geological Magazine, 14(2), 1–9.

    Google Scholar 

  • Singh, Y., & Chabria, T. (1999). Late Archaean-early Proterozoic Rb-Sr isochron age of granite from Kawadgaon, Bastar district, Madhya Pradesh. Journal of Geological Society of India, 54(4), 405–409.

    Google Scholar 

  • Singh, Y., & Chabria, T. (2002). Early Proterozoic 87Rb–86Sr model ages of pegmatite muscovite from rare metal-bearing granite-pegmatite system of Kawadgaon, Bastar craton, central India. Gondwana Research, 5(4), 889–893.

    Article  Google Scholar 

  • Singh, Y., Pandit, P. S. C., Bagora, S., & Jain, P. K. (2017). Mineralogy, geochemistry, and genesis of co-genetic granite-pegmatite-hosted rare metal and rare earth deposits of the Kawadgaon area, Bastar craton, Central India. Journal of Geological Society of India, 89(2), 115–130.

    Article  Google Scholar 

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the Earth’s crust. Bulletin of Geological Society of America, 72, 175–192.

    Article  Google Scholar 

  • Viswanathan, S., & Singh, Y. (2010). Critical element ratio maps of granitic terrains for exploration of atomic minerals. Journal of Applied Geochemistry, 12(3), 333–341.

    Google Scholar 

  • Wood, D. A., Joron, J. L., Treuil, M., Norry, M., & Tarney, J. (1979). Elemental and Sr isotope variations in basic lavas from Iceland and the surrounding ocean floor. Contributions to Mineralogy and Petrology, 70, 319–339.

    Article  Google Scholar 

Download references

Acknowledgements

We express our sincere gratitude to Shri L. K. Nanda, Director, AMD, Hyderabad, for granting permission to publish this paper; to Shri A. K. Sharma for taking microphotographs; and INAA Group, AMD, Hyderabad for analytical support. Prof. M. E. A. Mondal and an anonymous reviewer are thanked for their critical comments and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yamuna Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, Y. et al. (2019). High-Field Strength Elements Geochemistry of Granite and Co-genetic Pegmatites of the Kawadgaon Area, Bastar Craton, Central India. In: Mondal, M. (eds) Geological Evolution of the Precambrian Indian Shield. Society of Earth Scientists Series. Springer, Cham. https://doi.org/10.1007/978-3-319-89698-4_24

Download citation

Publish with us

Policies and ethics