Advertisement

High-Field Strength Elements Geochemistry of Granite and Co-genetic Pegmatites of the Kawadgaon Area, Bastar Craton, Central India

  • Yamuna SinghEmail author
  • G. B. Rout
  • A. K. Bhatt
  • P. S. C. Pandit
  • Sanjay Bagora
  • P. K. Gupta
  • S. D. Rai
  • G. B. Joshi
Chapter
Part of the Society of Earth Scientists Series book series (SESS)

Abstract

A geochemical study on granite and co-genetic pegmatites of the Kawadgaon area, Bastar craton, Central India reveals varying levels of enrichments of high-field strength elements (HFSEs) in both. However, granite has much higher contents of U, Th, Y, Zr, and rare-earth elements (REEs), whereas co-genetic pegmatites reveal anomalously high Nb and Ta contents. The data indicates a preferential enrichment of REEs in granite (av. 198 ppm). The chondrite-normalised REE plots of granite and co-genetic pegmatites show strongly fractionated patterns. Strong fractionation between light REE (LREE) and heavy REE (HREE) is brought out by high (LREE/HREE)N, (La/Lu)N, and (La/Yb)N ratios in granite and co-genetic pegmatites. Among LREEs, a strong fractionation is displayed by very high (La/Sm)N ratio (av. 5.69) in granite. Marked negative Eu anomalies in studied felsic rocks are attributed to fractionation of plagioclase feldspar. High La/Sc ratio in granite and decrease in Hf/Zr ratio from granite to co-genetic pegmatites are apparent, which are coherent with their behaviour in the sequence of fractionated felsic rocks. A preponderance of Nb and Ta in co-genetic pegmatites is due to their formation from still more fractionated melt leading to higher concentrations of these elements owing to their increased diffusion consequent to enrichment of fluxing components such as B, P, F, H2O in the residual pegmatitic fluids. The fertile nature of the investigated felsic bodies of the Kawadgaon area for rare-metals is revealed by anomalous abundances of Nb and Ta in them. A study of HFSEs abundances in felsic bodies of the region will help in exploration of rare metals and rare earths.

Keywords

Geochemistry HFSE Granite Co-genetic pegmatite Kawadgaon Bastar Central India 

Notes

Acknowledgements

We express our sincere gratitude to Shri L. K. Nanda, Director, AMD, Hyderabad, for granting permission to publish this paper; to Shri A. K. Sharma for taking microphotographs; and INAA Group, AMD, Hyderabad for analytical support. Prof. M. E. A. Mondal and an anonymous reviewer are thanked for their critical comments and useful suggestions.

References

  1. Altherr, R., Holl, A., Hegner, E., Langer, C., & Kreuzer, H. (2000). High-potassium, calc-alkaline I-type plutonism in the Europian Variscides: Northern Vosges (France) and northern Schwarzwald (Germany). Lithos, 50, 51–73.CrossRefGoogle Scholar
  2. Bandyopadhyay, B. K., Bhoskar, K. G., Ramachandra, H. M., Roy, A., Khadse, V. K., Mohan, M., et al. (1990). Recent geochronological studies in parts of the Precambrian of Central India. In Precambrian of Central India (Vol. 28, pp. 199–210). Geological Survey of India (Special Publications).Google Scholar
  3. Boynton, W. V. (1984). Geochemistry of the rare earth elements: Meteorite studies. In P. Henderson (Ed.), Rare earth element geochemistry: Developments in geochemistry (2nd Ed., pp. 63–114). Amsterdam: Elsevier.CrossRefGoogle Scholar
  4. Breaks, F. W., Selway, J. B., & Tindle, A. G. (2005). Fertile peraluminous granites and related rare-element pegmatites, Superior Province of Ontario. In R. L. Linnen & I. M. Samson (Eds.), Rare-element geochemistry and mineral deposits (GAC Short Course Notes 17, pp. 87–125).Google Scholar
  5. Calvin, F. M. (1985). Are strongly peraluminous magma derived from pelitic sedimentary source? Journal of Geology, 93, 673–689.CrossRefGoogle Scholar
  6. Cerny, P., & Meintzer, R. E. (1985). Fertile granite in the Archaean and Proterozoic fields of rare-element pegmatites; Crustal environment, geochemistry and petrogenetic relationships. In R. P. Taylor & D. F. Strong (Eds.), Recent advances in the geology of granite-related mineral deposits (Special Vol. 39, pp. 170–207). The Canadian Institute of Mining and Metallurgy.Google Scholar
  7. Chappell, B. W., & White, A. J. R. (1974). Two contrasting granite types. Pacific Geology, 8, 173–174.Google Scholar
  8. Chappell, B. W., & White, A. J. R. (1992). I- and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83, 1–26.CrossRefGoogle Scholar
  9. Christiansen, E. H., Stuckless, J. S., Funkhouser-Marolf, M. J., & Howell, K. H. (1988). Petrogenesis of rare-metal granites from depleted crustal sources: An example from the Cenozoic of Western Utah, U.S.A. In R. P. Taylor & D. F. Strong (Eds.), Recent advances in the geology of granite-related mineral deposits (Special Vol. 39, pp. 307–321). The Canadian Institute of Mining and Metallurgy.Google Scholar
  10. Cox, K. G., Bell, J. D., & Pankhurst, R. J. (1979). The interpretation of igneous rocks. London: George, Allen and Unwin.CrossRefGoogle Scholar
  11. Crookshank, H. (1963). Geology of southern Bastar and Jeypore from Bailadila ranre to Eastern Ghats. Geological Survey of India, 87, 1–149.Google Scholar
  12. Cullers, R. L., Basu, A., & Suttner, L. J. (1988). Geochemical signatures of provenance in sand-mixed material in soils and stream sediments near the Tobacco root batholiths, Montana, USA. Chemical Geology, 70, 335–348.CrossRefGoogle Scholar
  13. Cuney, M., & Kyser, K. (2009). Deposits related to magmatic differentiation. In M. Cuney & K. Kyser (Eds.), Short Course Series, Vol. 39. Recent and not-so-recent developments in uranium deposits and implications for exploration (pp. 57–77). Mineralogical Association of Canada, Society for Geology Applied to Mineral Deposits.Google Scholar
  14. Linnen, R. L., Van Lichtervelde, M., & Cerny, P. (2012). Granitic pegmatites as sources of strategic metals. Elements, 8, 275–280.CrossRefGoogle Scholar
  15. London, D. (2008). Pegmatites. Canadian Mineralogist, 10, 1–368.Google Scholar
  16. London, D., & Morgan, G. B., VI. (2012). The pegmatite puzzle. Elements, 8, 263–268.CrossRefGoogle Scholar
  17. Majumdar, D., & Dutta, P. (2014). Rera-earth element abundances in some A-type Pan-African granitoids of Karbi Hills, North East India. Current Science, 107(12), 2023–2029.Google Scholar
  18. Mason, B. (1966). Principles of geochemistry (3rd Ed., 329p). New York: Wiley.Google Scholar
  19. Mishra, K. S., Bagora, S., & Vijayanand, B. (2007). Rare metal mineralization around Kotwalpara-Kawargaon area, Dantewada district, Chhattisgarh. Gondwana Geological Magazine, 10, 209–214.Google Scholar
  20. Naqvi, S. M., Uday Raj, B., Subba Rao, D. V., Manikyamba, C., Nirmal Charan, S., Balaram, V., et al. (2002). Geology and geochemistry of arenite-quartz wacke from the Late Archaean Sandur schist belt-implications for provenance and accretion processes. Precambrain Research, 114, 177–197.CrossRefGoogle Scholar
  21. Ramakrishnan, M. (1990). Crustal development in southern Bastar, central Indian craton. In Precambrian of central India (Vol. 28, pp. 44–66). Geological Survey of India.Google Scholar
  22. Ramesh Babu, P. V., Pandey, B. K., & Dhana Raju, R. (1993). Rb-Sr ages on the granite and pegmatitic minerals from Bastar-Koraput pegmatite belt, Madhya Pradesh and Orissa, India. Journal of Geological Society of India, 42, 33–38.Google Scholar
  23. Ramesh Babu, P. V. (1999). Rare metal and rare earth pegmatites of central India. Exploration and Research for Atomic Minerals, 12, 7–52.Google Scholar
  24. Rub, A. K., Rub, M. G., Ashikhmina, N. A., & Chistyakova, N. I. (1994). Rare metal granites and associated mineralization of the Tigrin deposit, central Sikhote-Alin, Russia. International Geological Review, 36, 484–502.CrossRefGoogle Scholar
  25. Sarkar, G., Paul, D. K., DeLaeter, J. R., McNaughton, N. J., & Mishra, V. P. (1990). A geochemical and Pb, Sr isotopic study of the evolution of granite-gneisses from the Bastar craton, central India. Journal of Geological Society of India, 35(5), 480–496.Google Scholar
  26. Shand, S. J. (1927). Eruptive rocks (360p). New York: D. Van Nostrand Company.Google Scholar
  27. Singh, Y. (1991). Annual report for the field season 1990–91 (Unpublished Report). Atomic Minerals Directorate for Exploration and Research, Hyderabad.Google Scholar
  28. Singh, Y. (1998). Early Proterozoic rare metal and tin pegmatites near Kawadgaon, Bastar, M.P: An example of vertical pegmatite zonation. Journal of Geological Society of India, 51, 175–182.Google Scholar
  29. Singh, Y. (1999). Lithostratigraphic correlation of andalusite quartzites above the early Proterozoic granites intrusive into Bengpal and Sukma Groups in Gadapal-Jaram area, South Bastar, Madhya Pradesh. Gondwana Geological Magazine, 14(2), 1–9.Google Scholar
  30. Singh, Y., & Chabria, T. (1999). Late Archaean-early Proterozoic Rb-Sr isochron age of granite from Kawadgaon, Bastar district, Madhya Pradesh. Journal of Geological Society of India, 54(4), 405–409.Google Scholar
  31. Singh, Y., & Chabria, T. (2002). Early Proterozoic 87Rb–86Sr model ages of pegmatite muscovite from rare metal-bearing granite-pegmatite system of Kawadgaon, Bastar craton, central India. Gondwana Research, 5(4), 889–893.CrossRefGoogle Scholar
  32. Singh, Y., Pandit, P. S. C., Bagora, S., & Jain, P. K. (2017). Mineralogy, geochemistry, and genesis of co-genetic granite-pegmatite-hosted rare metal and rare earth deposits of the Kawadgaon area, Bastar craton, Central India. Journal of Geological Society of India, 89(2), 115–130.CrossRefGoogle Scholar
  33. Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the Earth’s crust. Bulletin of Geological Society of America, 72, 175–192.CrossRefGoogle Scholar
  34. Viswanathan, S., & Singh, Y. (2010). Critical element ratio maps of granitic terrains for exploration of atomic minerals. Journal of Applied Geochemistry, 12(3), 333–341.Google Scholar
  35. Wood, D. A., Joron, J. L., Treuil, M., Norry, M., & Tarney, J. (1979). Elemental and Sr isotope variations in basic lavas from Iceland and the surrounding ocean floor. Contributions to Mineralogy and Petrology, 70, 319–339.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Yamuna Singh
    • 1
    • 4
    Email author
  • G. B. Rout
    • 2
  • A. K. Bhatt
    • 3
  • P. S. C. Pandit
    • 2
  • Sanjay Bagora
    • 2
  • P. K. Gupta
    • 1
  • S. D. Rai
    • 1
  • G. B. Joshi
    • 1
  1. 1.Atomic Minerals Directorate for Exploration and Research, Department of Atomic EnergyGovernment of IndiaBegumpet, HyderabadIndia
  2. 2.Atomic Minerals Directorate for Exploration and Research, Department of Atomic EnergyGovernment of IndiaCivil Lines, NagpurIndia
  3. 3.Atomic Minerals Directorate for Exploration and Research, Department of Atomic EnergyGovernment of IndiaNagarbhavi, BengaluruIndia
  4. 4.Centre for Earth, Ocean and Atmospheric SciencesUniversity of HyderabadGachibowli, HyderabadIndia

Personalised recommendations