Geochemistry of the Mafic Metavolcanic Rocks of Mauranipur-Babina Greenstone Belt, Bundelkhand Craton, Central India: Implication for Tectonic Settings During the Archaean

  • Ausaf RazaEmail author
  • M. E. A. Mondal
Part of the Society of Earth Scientists Series book series (SESS)


In the Bundelkhand craton of the central Indian shield Mauranipur-Babina greenstone belt is exposed along the E-W trending Bundelkhand tectonic zone (BTZ). The supracrustal sequence of this belt consists of metavolcanic and metasedimentary rocks associated with the granitic gneiss. The metavolcanic rocks occur as small isolated outcrops and have undergone greenschist to amphibolite facies of metamorphism. Since this craton underwent a complex history of faulting, folding, and fabric development, the original stratigraphic relationships between different spatially associated units are unknown. On the basis of the geochemical characteristic of these metavolcanics (amphibolites), two different assemblages are identified (1) oceanic assemblage consisting N-MORB, E-MORB and OIB and (2) subduction derived assemblage comprising oceanic and continental arc associations. The N-MORB type amphibolites are characterized by depleted REE patterns with (La/Yb)n = 0.33–0.36, (La/Sm)n = 0.32–0.40, (Gd/Yb)n = 0.91–1.09, ∑ REE = 16.44–22.31 enrichment of Nb relative to Th, La and Ce. The E-MORB type amphibolites show flat REE patterns with (La/Yb)n = 1.06, (La/Sm)n = 0.68, (Gd/Yb)n = 1.43, ∑ REE = 48.70 and positive anomalies at Nb and Zr. The OIB type amphibolite show fractionated REE patterns with (La/Yb)n = 2.72–3.73; (Gd/Yb)n = 2.44–2.74 and (Sm/Yb)n = 2.91–3.28 and high total REE contents (∑ REE = 75.40–99.39 ppm). On PM normalized diagram they display progressive enrichment of incompatible elements. The amphibolites of the subduction derived assemblage show fractionated REE patterns with (La/Yb)N = 4.44–15.79, concave HREE patterns and positive as well as negative Eu anomalies. The elemental ratios of these amphibolites {(Nb/Th)pm = 0.06–0.23, (Nb/La)pm = 0.15–1.05, (Ti/Sm)pm = 0.09–1.14, (Zr/Nd)pm = 0.07–0.69 and (Zr/Sm)pm = 0.14–1.02} are similar to the basaltic rocks occurring in modern subduction related geodynamic settings. The presence of these N-MORB, E-MORB, OIB and IAB in Mauranipur-Babina greenstone belt of Bundelkhand craton suggests the existence of different plate tectonic settings in central part of the Indian shield during the Archaean. Incompatible trace element characteristics suggest the enrichment of Archaean MORB type mantle source by subduction derived components leading to the conversion of the Achaean depleted upper mantle to enriched sub-arc mantle wedge.


Archaean Indian shield Bundelkhand craton Mauranipur-Babina greenstone belt 



The authors are thankful to the Chairman, Department of Geology, Aligarh Muslim University for providing necessary facilities for this work. First author is also thankful to Dr. P. R. Golani, Deputy Director General, Geological Survey of India, SR: Hyderabad for his immense guidance. The financial assistance provided by the Department of Science and Technology, Ministry of Science and Technology, Government of India is thankfully acknowledged (SR/S4/ES 469/2009).


  1. Agrawal, S., Guevara, M., & Verma, S. P. (2008). Tectonic discrimination of basic and ultrabasic volcanic rocks through log-transformed ratios of immobile trace elements. International Geology Review, 50, 1057–1079. Scholar
  2. Ahmad, T., & Tarney, J. (1991). Geochemistry and petrogenesis of Garhwal volcanics: Implications for evolution of the Indian lithosphere. Precambrian Research, 50, 69–88.CrossRefGoogle Scholar
  3. Arndt, N. T. (1994). Archean komatiites. In K. C. Condie (Ed.), Archean crustal evolution. Developments in precambrian geology (Vol. 11, pp. 11–44).CrossRefGoogle Scholar
  4. Balaram, V., & Gnaneshwar Rao, T. (2003). Rapid determination of REEs and other trace elements in geological samples by microwave acid digestion and ICP-MS. Atomic Spectrometry, 44, 206–212.Google Scholar
  5. Basu, A. K. (1986). Geology in parts of Bundelkhand granite massif, central India. Records of the Geological Survey of India, 117(part-2), 61–124.Google Scholar
  6. Basu, A. K. (2001). Some characteristics of the Precambrian crust in northern part of central India (Vol. 55, pp. 181–204). Geological Survey Of India, Special Publication.Google Scholar
  7. Benn, K., Mareschal, J.-C. and Condie, K. C. (2006). Introduction. In K. Benn, J.-C. Mareschal, & K. C. Condie (Eds.), Archean geodynamics and environments (Vol. 164, pp. 1–5). AGU Geophysical Monograph Series.CrossRefGoogle Scholar
  8. Cann, J. R. (1970). Rb, Sr, Y, Zr and Nb in some ocean floor basaltic rocks. Earth and Planetary Science Letters, 10, 7–10.CrossRefGoogle Scholar
  9. Condie, K. C. (1981). Archean greenstone belts (p. 434). Amsterdam: Elsevier.Google Scholar
  10. Condie, K. C. (2005). Earth as an evolving planetary system (p. 447). Amsterdam: Elsevier.Google Scholar
  11. Crawford, A. R. (1970). The Precambrian geochronology of Rajasthan and Bundelkhand, northern India. Canadian Journal of Earth Sciences, 7, 91–110.CrossRefGoogle Scholar
  12. Davidson, J. P., & Wolff J. A. (1989). On the origin of the Nb–Ta “anomaly” in arc magmas. EOS.Google Scholar
  13. de Wit, M. J. (1998). On archean granites, greenstones, cratons, and tectonics: Does the evidence demand a verdict? Precambrian Research, 91, 181–226.CrossRefGoogle Scholar
  14. Dostal, J., & Mueller, W. U. (2004). Komatiite geochemistry. In P. G. Eriksson, W. Altermann, D. R. Nelson, W. U. Mueller, & O. Catuneanu (Eds.), The Precambrian earth: Tempos and events (pp. 290–298). Amsterdam: Elsevier.Google Scholar
  15. Dostal, J., Muller, W. U., & Murphy, J. B. (2004). Archaean molasses basin evolution and magmatism, Wabigoon Subprovince, Canada. The Journal of Geology, 112, 435–454. Scholar
  16. Drury, S. A. (1983). The petrogenesis and tectonic setting of Archean metavolcanics from Karnataka state, South India. Geochimica et Cosmochimica Acta, 47, 317–329.CrossRefGoogle Scholar
  17. Ferry, J. M., & Spear, F. S. (1978). Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contributions to Mineralogy and Petrology, 66, 113–117.CrossRefGoogle Scholar
  18. Field, D., & Elliot, R. B. (1978). The chemistry gabbro/amphibolites transitions in south Norway. Contributions to Mineralogy and Petrology, 47, 63–76.CrossRefGoogle Scholar
  19. Floyd, P. A. (1993). Geochemical discrimination and petrogenesis of alkalic basalt sequences in part of the Ankara mélange, central Turkey. Journal of the Geological Society, 150, 541–550.CrossRefGoogle Scholar
  20. Floyd, P. A., & Winchester, J. A. (1978). Identification and discrimination of altered and metamorphosed volcanic rocks using immobile elements. Chemical Geology, 21, 291–306.CrossRefGoogle Scholar
  21. Foley, S. F., Barth, M. G., & Jenner, G. A. (2000). Rutile/melt partition coefficients for trace elements and assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochimica et Cosmochimica Acta, 64, 933–938.CrossRefGoogle Scholar
  22. Gopalan, K., Macdougall, J. D., Roy, A. B., & Murali, A. V. (1990). Sm-Nd evidences for 3.3 Ga old rock in Rajasthan, northwestern India. Precambrian Research, 48, 287–297.CrossRefGoogle Scholar
  23. Green, T., & Pearson, N. J. (1987). An experimental study of Nb and Ta partitioning between Ti- rich minerals and silicate liquids at high pressure and temperature. Geochimica et Cosmochimica Acta, 51, 5562.CrossRefGoogle Scholar
  24. Greenough, J. D., Dostal, J., & Mallory Greenough, L. M. (2005). Oceanic island volcanism II: Mantle processes. Geoscience Canada, 32, 77–90.Google Scholar
  25. Hanson, G. N. (1980). Rare Earth Elements in petrogenetic studies of igneous systems. Annual Review of Earth and Planetary Sciences, 8, 373–406.CrossRefGoogle Scholar
  26. Hollings, P. (2002). Archaean Nb-enriched basalts in the northern Superior Province. Lithos, 64, 1–14.CrossRefGoogle Scholar
  27. Hollings, P., & Kerrich, R. (2000). An Archaean arc basalt-Nbenriched basalts-adakiteassociation: The 2.7 Ga Confederation assemblage of the Birch-Uchi greenstone belt, Superior Province. Contributions to Mineralogy and Petrology, 139, 208–226.CrossRefGoogle Scholar
  28. Horan, M. F., Hanson, G. N., & Spencer, K. J. (1987). Pb and Nd isotope and trace element constraints on the origin of basic rocks in an early Proterozoic igneous complex Minnesota. Precambrian Research, 37, 323–342.CrossRefGoogle Scholar
  29. Jochum, K. P., Arndt, N. T., & Hoffman, A. W. (1991). Nb-Th-La in komatiites and basalts: Constraints on komatiites petrogenesis and mantle evolution. Earth and Planetary Science Letters, 107, 272–289.CrossRefGoogle Scholar
  30. Kaur, P., Zeh, Armin, & Chaudhri, Naveen. (2014). Characterisation and U–Pb–Hf isotope record of the 3.55 Ga felsic crust from the Bundelkhand Craton, northern India. Precambrian Research, 255, 236–244.CrossRefGoogle Scholar
  31. Kaur, P., Zeh, A., Chaudhri, N., & Eliyas, N. (2016). Unravelling the record of Archaean crustal evolution of the Bundelkhand Craton, northern India using U–Pb zircon–monazite ages, Lu–Hf isotope systematics, and whole-rock geochemistry of granitoids. Precambrian Research, 281, 384–413.CrossRefGoogle Scholar
  32. Kerrich, R., & Polat, A. (2006). Archean greenstone-tonalite duality: Thermochemical mantle convection models or plate tectonics in the early earth of global dynamics? Tectonophysics, 415, 141–165.CrossRefGoogle Scholar
  33. Kerrich, R., Wyman, D. A., Fan, J., & Bleeker, W. (1998). Boninite series: Low Ti-tholeiite associations from the 2.7 Ga Abitibi greenstone belt. Earth and Planetary Science Letters, 164, 303–316.CrossRefGoogle Scholar
  34. Lafleche, M. R., Dupuy, C., & Dostal, J. (1992). Tholeiitic volcanic rocks of the late Archaean Blake River group, southern Abitibi greenstone belt: Origin and geodynamic implications. Canadian Journal of Earth Sciences, 29, 1448–1458.CrossRefGoogle Scholar
  35. Le Bas, M. J., Le Maitre, R. W., Streckeisen, A., & Zenettin, B. (1986). A chemical classification of volcanic rocks based on total alkali-silica diagram. Journal of petrology, 27, 745–750.CrossRefGoogle Scholar
  36. Liu, W. W. S., Bai, X. P., Yang, P., Li, Q., & Zhang, L. (2011). Geochemistry and zircon U–Pb–Hf isotopic systematics of the Neoarchean Yixian-Fuxin greenstone belt, northern margin of the North China Craton: Implications for petrogenesis and tectonic setting. Gondwana Research, 20, 64–81.CrossRefGoogle Scholar
  37. Ludden, J. N., & Thompson, G. (1979). An evaluation of the behavior of the rare earth elements during the weathering of sea-floor basalts. Earth and Planetary Science Letters, 43, 85–92.CrossRefGoogle Scholar
  38. Ludden, J., Gelienas, L., & Trudel, P. (1982). Archaean metavolcanics from the Rouyn–Noranda district, Abitibi greenstone belt, Quebec: 2. Moobility of trace elements and petrogenetic constraints. Canadian Journal of Earth Sciences, 19, 2276–2287.CrossRefGoogle Scholar
  39. Malviya, V. P., Arima, M., Pati, J. K., & Kaneko, Y. (2004). First report of metamorphosed basaltic pillow lava from central part of Bundelkhand craton, India: An Island arc setting of possible Late Archaean age. Gondwana Research, 7, 1338–1340.Google Scholar
  40. Malviya, V. P., Arima, M., Pati, J. K., & Kaneko, Y. (2006). Petrology and geochemistry of metamorphosed basaltic pillow lava and basaltic komatiite in Mauranipur area: Subduction related volcanism in Archean Bundelkhand craton, Central India. Journal of Mineralogical and Petrological Sciences, 101, 199–217.CrossRefGoogle Scholar
  41. Manikyamba, C., Kerrich, R., Naqvi, S. M., & Mohan, M. R. (2004). Geochemical systematics of tholeiitic basalts from the 2.7 Ga Ramgiri-Hungund composite greenstone belt, Dharwar craton. Precambrian Research, 134, 21–39.CrossRefGoogle Scholar
  42. Manikyamba, C., Kerrich, R., Tarun, C., & Khanna, T. C. (2007). Geochemistry of adakites and rhyolites from the Neoarchaean Gadwal greenstone belt, eastern Dharwar craton, India: Implications for sources and geodynamic setting. Canadian Journal of Earth Sciences, 44(11), 1517–1535.CrossRefGoogle Scholar
  43. Masters, R. L., & Ague, J. J. (2005). Regional-scale fluid flow and element mobility in Barrow’smetamorphic zones, Stonehaven, Scotland. Contributions to Mineralogy and Petrology, 150, 1–18.CrossRefGoogle Scholar
  44. McDonough, W .F., & Sun, S. S. (1995). The composition of the Earth. Chemical Geology ,120(3–4), 223–253CrossRefGoogle Scholar
  45. Mints, M. V., & Eriksson, P. G. (2016). Secular changes in relationships between plate-tectonic and mantle-plume engendered processes during Precambrian time. Geodynamics and Tectonophysics, 7(2), 173–232.CrossRefGoogle Scholar
  46. Mondal, M. E. A., Goswami, J. N., Deomurari, M. P., & Sharma, K. K. (2002). Ion microprobe 207Pb/206Pb ages of zircon from the Bundelkhand massif, northern India: Implications for crustal evolution of the Bundelkhand-Aravalli protocontinent. Precambrian Research, 117, 85–100.CrossRefGoogle Scholar
  47. Naqvi, S. M., & Ranapratap, J. G. (2007). Geochemistry of adakites from Neoarchean active continental margin of Shimoga schist belt, Western Dharwar Craton, India: Implications for the genesis of TTG. Precambrian Research, 156, 32–54.CrossRefGoogle Scholar
  48. Naqvi, S. M., Manikyamba, C., Gnaneshwar Rao, T., Subha Rao, D. V., Ram Mohan, M., & Srinivasa Sarma, D. (2002). Geochemical and isotopic constraints of Neoarchaean Fossil Plume for evolution of volcanic rocks of Sander greenstone belt, India. Journal of Geological Society Of India, 60, 27–56.Google Scholar
  49. Norry, M. J., & Fitton, J. G. (1983). Compositional differences between oceanic and continental basic lavas and their significance. In C. J. Hawkesworth & M. J. Norry (Eds.), Continental basalts and mantle xenoliths (pp. 5–9). Nantwich: Shiva Publications.Google Scholar
  50. Ordonez-Calderon, J. C., Polat, A., Fryer, B. J., Appel, P. W. U., van Gool, J. A. M., Dilek, Y., et al. (2009). Geochemistry and geodynamic origin of the Mesoarchea Ujarassuit and Ivisaartoq greenstone belts, SW Greenland. Lithos, 113, 133–157.CrossRefGoogle Scholar
  51. Ordonez-Calderon, J. C., Polat, A., Fryer, B. J., & Gagnon, J. E. (2011). Field and geochemical characteristics of Mesoarchean to Neoarchean volcanic rocks in the Storø greenstone belt, SW Greenland: Evidence for accretion of intra-oceanic volcanic arcs. Precambrian Research, 184, 24–42.CrossRefGoogle Scholar
  52. Pati, J. K. (1999). Specialized thematic study of older enclaves (migmatites, gneisses and supracrustals) within the Bundelkhand Granitoid Complex (BUGC). Geological Survey of India (NR), Progress Report (FS 1997–1998). 25p.Google Scholar
  53. Pearce, J. A. (1982). Trace element characteristics of lavas from destructive plate boundaries. In R. S. Thorpe (Ed.), Andesites (pp. 525–548). New York: John Wiley and Sons.Google Scholar
  54. Pearce, J. A. (2003). Supra-subduction zone ophiolites: The search for modern analogues. In Y. Dilek & S. Newcomb (Eds.), Ophiolite concept and the evolution of geological thought (pp. 269–293). Geological Society of America, Special Papers 373.CrossRefGoogle Scholar
  55. Pearce, J. A. (2008). Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean Oceanic crust. Lithos, 100, 14–48.CrossRefGoogle Scholar
  56. Pearce, J. R., & Cann, J. R. (1973). Tectonic setting of basic volcanic rocks determined using trace element analysis. Earth and Planetary Science Letters, 19, 290–300.CrossRefGoogle Scholar
  57. Pearce, J. A., & Peate, D. W. (1995). Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences, 23, 251–285.CrossRefGoogle Scholar
  58. Percival, J. A., Mcnicoll, V., & Bailes, A. H. (2006). Strike-slip juxtaposition of ca. 2.72 Ga juvenile arc and 2.98 Ga continental margin sequences and its implications for Archean terrane accretion, western Superior Province, Canada. Canadian Journal of Earth Sciences, 43, 895–927.CrossRefGoogle Scholar
  59. Petterson, M. G., & Windley, B. F. (1992). Field relations, Geochemistry and petrogenesis of the Cretaceous basaltic Jutal dykes, Kohistan, northern Pakistan. Journal of the Geological Society of London, 149, 107–114.CrossRefGoogle Scholar
  60. Polat, A. (2009). The geochemistry of Neoarchean (ca. 2700 Ma) tholeiitic basalts, transitional to alkaline basalts, and gabbros, Wawa Subprovince, Canada: Implications for petrogenetic and geodynamic processes. Precambrian Research, 168, 83–105.CrossRefGoogle Scholar
  61. Polat, A. (2015). Geochemical variations in Archean volcanic rocks, southwestern Greenland: Traces of diverse tectonic settings in the early earth. Geology, 41, 379–380.CrossRefGoogle Scholar
  62. Polat, A., & Hofmann, A. W. (2003). Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland. Precambrian Research, 126, 197–218.CrossRefGoogle Scholar
  63. Polat, A., Hofmann, A. W., & Rosing, M. T. (2002). Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greenstone belt, West Greenland: Geochemical evidence for intra-oceanic subduction zone processes in the early earth. Chemical Geology, 184, 231–254.CrossRefGoogle Scholar
  64. Polat, A., & Kerrich, R. (2000). Archean greenstone belt magmatism and continental growth–mantle evolution connection: Constraints from Th–U–Nb–LREE systematics of the 2.7 Ga Wawa subprovince, Superior Province, Canada. Earth and Planetary Science Letters, 175, 41–54.CrossRefGoogle Scholar
  65. Polat, A., & Kerrich, R. (2001). Magnesian andesites, Nb-enriched basalt–andesites, and adakites from late Archean 2.7 Ga Wawa greenstone belts, Superior Province, Canada: Implications for late Archean subduction zone petrogenetic processes. Contributions to Mineralogy and Petrology, 141, 36–52.CrossRefGoogle Scholar
  66. Polat, A., & Kerrich, R. (2006). Reading the geochemical fingerprints of archean hot subduction volcanic rocks: Evidence for accretion and crustal recycling in a mobile tectonic regime. In K. Benn, J.-C. Mareschal & K. C. Condie (Eds.), Archean Geodynamics and Environments (pp. 189–213). AGU Geophysical Monograph Series 164.CrossRefGoogle Scholar
  67. Polat, A., Kerrich, R., & Wyman, D. A. (1998). The late Archean Schreiber-Hemlo and White River-Dayohessarah greenstone belts, Superior Province: Collages of oceanic plateaus oceanic arcs, and subduction–accretion complexes. Tectonophysics, 289, 295–326.CrossRefGoogle Scholar
  68. Polat, A., Kerrich, R., & Wyman, D. A. (1999). Geochemical diversity in oceanic komatiites and basalts from the late Archean Wawa greenstone belts, Superior Province, Canada: Trace element and Nd isotope evidence for a heterogeneous mantle. Precambrian Research, 94, 139–173.CrossRefGoogle Scholar
  69. Polat, A., Appel, W. U. P., Frei, R., Pan, Y., Dilek,Y. Ordóñez-Calderó C. J., et al. (2007). Field and geochemical characteristics of the Mesoarchean (~3075 Ma) Ivisaartoq greenstone belt, southern West Greenland: Evidence for seafloor hydrothermal alteration in supra-subduction oceanic crust. Precambrian Research, 11, 69–91.CrossRefGoogle Scholar
  70. Polat, A., Peter, W. U., & Brian, J. Fryer. (2011). An overview of the geochemistry of Eoarchean to Mesoarchean ultramafic to maficvolcanic rocks, SW Greenland: Implications for mantle depletion and petrogenetic processes at subduction zones in the early Earth. Gondwana Research, 20, 255–283.CrossRefGoogle Scholar
  71. Pradhana, V. R., Meerta, J. G., Pandit, M. K., Kamenova, G., & Mondal, M. E. A. (2012). Paleomagnetic and geochronological studies of the mafic dyke swarms of Bundelkhand craton, central India: Implications for the tectonic evolution and paleogeographic reconstructions. Precambrian Research, 198–199, 51–76.CrossRefGoogle Scholar
  72. Puchtel, I. S., Hofmann, A. W., Amelin, Yu V, Garbe- Schonberg, C. D., Samsonov, A. V., & Shchipansky, A. A. (1999). Combined mantle plume-island arc model for the formation of the 2.9 Ga Sumozero-Kenozero greenstone belt, SE Baltic shield: Isotope and trace element constraints. Geochimica et Cosmochimica Acta, 63, 3579–3595.CrossRefGoogle Scholar
  73. Ramakrishnan, M., & Vaidyanadhan, R. (2010). Geology of India (Vol. 1). Bangalore: Geological Society of India. 556p.Google Scholar
  74. Roy, A. B., & Kroner, A. (1996). Single zircon evaporation ages constraining the growth of Archean Aravalli Craton, northwestern Indian shield. Geological Magazine, 133, 333–342.CrossRefGoogle Scholar
  75. Saha L., Frei D, Gerdes A., Pati J. K., Sarkar S., Patole V., Bhandari A., & Nasipuri P. (2015). Crustal geodynamics from the Archaean Bundelkhand Craton, India: Constraints from zircon U–Pb–Hf isotope studies. Geological Magazine, 153(1), 179–192 (2016).CrossRefGoogle Scholar
  76. Sandeman, H. A., Hanmer, S., Tella, S., Armitage, A. A., Davis, W. J., & Ryan, J. J. (2006). Petrogenesis of Neoarchaean volcanic rocks of the MacQuoid supracrustal belt: A backarc setting for the northwestern Hearne subdomain, western Churchill Province, Canada. Precambrian Research, 144, 14–165.CrossRefGoogle Scholar
  77. Sarkar, A., Trivedi, J. R., Gopalan, K., Singh, P. N., Das, A. K., & Paul, K. (1984). Rb-Sr geochronology of Bundelkhand granite complex in the Jhansi-Babina- Talbehat sector, U.P. Indian Journal of Earth Science, CEISM Seminar volume, 64–72.Google Scholar
  78. Saunders, A. D., Norry, M. J., & Tarney, J. (1991). Fluid influence on the trace element compositions of subduction zone magmas. Philosophical Transactions of the Royal Society of London, 335, 377–392.CrossRefGoogle Scholar
  79. Sharma, K. K., & Rahman, A. (2000). The early Archaean-Paleoproterozoic crustal growth of the Bundelkhand craton northern Indian shield. In M. Deb (Ed.), Crustal evolution and metallogeny in the Northwestern Indian Shield (pp. 51–72). New Delhi: Narosa Publishing House.Google Scholar
  80. Shchipansky, A. A., Samsonov, A. V., & Bibikova, E. V. (2004). 2.8 Ga boninite-hosting partial subduction zone ophiolite sequences from the North Karelian greenstone belt, NE Baltic Shield, Russia. In T. M. Kusky (Ed.), Precambrian ophiolites and related rocks (pp. 425–486). Amsterdam: Elsevier.CrossRefGoogle Scholar
  81. Singh, V. K., & Slabunov, A. (2013). The greenstone belts of the Bundelkhand craton, Central India: New geochronological data and geodynamic setting. In V. K. Singh & R. Chandra (Eds.), International Association for Gondwana Research Conference Series No. 16, 3rd International Conference Precambrian Continental Growth and Tectonism, Jhansi, India (pp. 170–171).Google Scholar
  82. Stein, M., & Hoffmann, A. W. (1994). Mantle plume and episodic crustal growth. Nature, 372, 63–68.CrossRefGoogle Scholar
  83. Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In A. D. Saunder & M. J. Norry (Eds.), Magmatism in Ocean basins (pp. 313–345). Geological Society of London, Special Publication No. 42.CrossRefGoogle Scholar
  84. Sun, S. S., & Nesbitt, R. W. (1977). Chemical heterogeneity of the Archean mantle composition of the bulk earth and mantle evolution. Earth and Planetary Science Letters, 35, 429–448.CrossRefGoogle Scholar
  85. Sun, S. S., Nesbitt, R. W., & McCulloch, M. T. (1989). Geochemistry and petrogenesis of Archaean and early Proterozoic high-magnesian basalts. In A. J. Crawford (Ed.), Boninites and related rocks (pp. 148–173). London: Unwin Highman.Google Scholar
  86. Tatsumi, Y., & Nakamura, N. (1986). Composition of aqueous fluid from serpentinite in the subducted lithosphere. Geochemical Journal, 20, 191–196.CrossRefGoogle Scholar
  87. Ujike, O., Goodwin, A. M., & Shibata, T. (2007). Geochemistry of Archean volcanic rocks from the Upper Keewatin assemblage (ca. 2.7 Ga), Lake of the Woods greenstone belt, Western Wabigoon subprovince, Superior Province, Canada. Island Arc, 16, 191–208.CrossRefGoogle Scholar
  88. Van Boening, A. M., & Nabelek, P. I. (2008). Petrogenesis and tectonic implications of Paleoproterozoic mafic rocks in the Black Hills, South Dakota. Precambrian Research, 167, 363–376.CrossRefGoogle Scholar
  89. Van Kranendonk, M. J. (2004). Archean tectonics, a review. Precambrian Research, 131, 143–151.CrossRefGoogle Scholar
  90. Verma, S. K., Verma, S. P., Oliveira, E. P., Singh, V. K., & Moreno, J. A. (2016). LA-SF-ICP-MS zircon U–Pb geochronology of granitic rocks from the central Bundelkhand greenstone complex, Bundelkhand craton, India. Journal of Asian Earth Sciences, 118, 125–137.CrossRefGoogle Scholar
  91. Wang, W., Liu, S., Bai, X., Yang, P., Li, Q., & Zhang, L. (2011). Geochemistry and zircon U-Pb–Hf isotopic systematics of the Neoarchean Yixian-Fuxin greenstone belt, northern margin of the North China Craton: Implications for petrogenesis and tectonic setting. Gondwana Research, 20, 64–81.CrossRefGoogle Scholar
  92. Wang, Z. H., Wilde, S. A., Wang, K. Y., & Yu, L. J. (2004). AMORB-arc basalt–adakite association in the 2.5 Ga Wutai greenstone belt: Late Archean magmatism and crustal growth in the North China Craton. Precambrian Research, 131, 323–343.CrossRefGoogle Scholar
  93. Weaver, B. L., & Tarney, J. (1981). Lewisian gneiss geochemistry and Archean crustal development models. Earth Planet. Sci. un., 55, 171–180.CrossRefGoogle Scholar
  94. Wiedenbeck, M., Goswami, J. N., & Roy, A. B. (1996). Stabilization of Aravalli craton of the north-western India at 2.5 Ma: An ion microprobe zircon study. Chemical Geology, 129, 325–340.CrossRefGoogle Scholar
  95. Winchester, J. A., & Max, M. D. (1982). The geochemistry and origin of thr Precambrian rocks of the Rosslare Complex S.E. Ireland. Journal of the Geological Society of London, 139, 309–319.CrossRefGoogle Scholar
  96. Winchester, J. A., Park, K. G., & Holland, J. G. (1980). The geochemistry of Levisian semipelitic schists from the Gairloch district western Ross. Scottish Journal of Geology, 16, 165–179.CrossRefGoogle Scholar
  97. Windley, B. F. (1995). The evolving continents. Wiley.Google Scholar
  98. Wolff, J. A. (1984). Variation in Nb/Ta during differentiation of phonolitic magma, Tenerife, Canary Islands. Geochimica et Cosmochimica Acta, 48, 1345–1348.CrossRefGoogle Scholar
  99. Wyman, D. A., & Kerrich, R. (2010). Mantle plume–volcanic arc interaction: Consequence for magmatism, metallogeny, and cratonization in the Abitibi and Wawa subprovinces, Canada. Canadian Journal of Earth Sciences, 47, 565–589.CrossRefGoogle Scholar
  100. Wyman, D. A., Bleeker, W., & Kerrich, R. (1999). A 2.7 Ga plume, proto-arc, to arc transition and the geodynamic setting of the Kidd Creek deposit: Evidence from precise ICP MS trace element data. Economic Geology Monograph, 10, 51–528.Google Scholar
  101. Wyman, D. A., Ayer, J. A., & Devaney, J. R. (2000). Niobiumenriched basalts from the Wabigoon subprovince, Canada: Evidence for adakitic metasomatism above an Archaean subduction. Earth and Planetary Science Letters, 179, 21–30.CrossRefGoogle Scholar
  102. Xie, Q., Kerrich, R., & Fan, J. (1993). HFSE/REE fractionations recorded in the three komatiite- basalt sequences, Archean Abitibi belt: Implications for multiple plume sources and depth. Geochimica et Cosmochimica Acta, 57, 4111–4118.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of GeologyAligarh Muslim UniversityAligarhIndia
  2. 2.Geological Survey of India (GSI)JaipurIndia

Personalised recommendations