Skip to main content

Precambrian Crustal History Unraveled from the Geochemical Studies of Post-Archean Rocks, Arunachal Pradesh, NE Lesser Himalaya

  • Chapter
  • First Online:
Geological Evolution of the Precambrian Indian Shield

Part of the book series: Society of Earth Scientists Series ((SESS))

  • 583 Accesses

Abstract

In an endeavor to document the composition and evolution of the Precambrian crust from the Northeast Lesser Himalaya from where much less information is available, Paleoproterozoic (1900  ±  100 Ma) metasedimentary (pelites and quartzites) rocks and granites from the Bomdila Group, Arunachal Pradesh were thoroughly examined. The integrated approach adopted in the study including field, petrography and major and trace element geochemistry indicate that the metasediments are felsic in composition and may have been derived from a granitic source, which may have undergone moderate to intense chemical weathering. The associated basement granites, on the basis of field and mineralogy, consists of two types of magmatic phases; porphyritic gneisses containing biotite and muscovite without tourmaline (referred as two-mica granites) and a weakly to non-foliated leucogranite having abundant tourmaline (referred as tourmaline granite). The geochemical signatures such as high peraluminosity (A/CNK > 1.1), S-type nature, normative corundum, presence of metasedimentary enclaves, enrichment in incompatible elements (Rb, Ba, K, Th, La) and depletion in high field strength elements (HFSE) and their respective ratios (such as Zr/Sc, Ti/Zr, Th/Sc) suggest that both suites are derived from a pelitic source, similar to that of the associated metasediments. This study further suggests the unroofing of felsic material which has supplied detritus to the Bomdila basin, thus establishing the felsic composition of the Precambrian crust in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Absar, N., & Sreenivas, B. (2015). Petrology and geochemistry of greywackes of the ~1.6 Ga Middle Aravalli Supergroup, northwest India: Evidence for active margin processes. International Geology Review, 57(2), 134–158.

    Article  Google Scholar 

  • Acharrya, S. K. (1994). The Cenozoic foreland basin and tectonics of the eastern sub-Himalaya: Problems and prospects. Himalayan Geology, 15, 3–21.

    Google Scholar 

  • Acharrya, S. K. (1998). Thrust tectonics and evolution of domes and the syntaxis in eastern Himalaya, India. Journal of Nepal Geological Society, 18, 1–17.

    Google Scholar 

  • Balaram, V., & Gnaneshwar Rao, T. (2003). Rapid determination of REEs and other trace elements in geological samples by microwave acid digestion and ICP-MS. Atomic Spectroscopy, 24, 206–212.

    Google Scholar 

  • Bernard, F., Moutou, P., & Pichavant, M. (1985). Phase relations of tourmaline leucogranites and the significance of tourmaline in silicic magmas. The Journal of Geology, 93, 271–291.

    Article  Google Scholar 

  • Bhatia, M. R., & Crook, K. A. W. (1986). Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92, 181–193.

    Article  Google Scholar 

  • Condie, K. C. (1993). Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chemical Geology, 104, 1–37.

    Article  Google Scholar 

  • Condie, K. C., & Kröner, A. (2013). The building blocks of continental crust: Evidence for a major change in the tectonic setting of continental growth at the end of the Archean. Gondwana Research, 23, 394–402.

    Article  Google Scholar 

  • Cox, R., Lower, D. R., & Cullers, R. L. (1995). The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the south-western United States. Geochimica et Cosmochimica Acta, 59, 2919–2940.

    Article  Google Scholar 

  • Das, A. K., Bakliwal, P. C., & Dhoundial, D. P. (1975). A brief outline of the geology of parts of Kameng District, NEFA (Vol. 24, pp. 15–27). Geological Society of India, Miscellaneous Publications.

    Google Scholar 

  • Dickinson, R., Beard, L. S., Brakenridge, G. R., Evjavec, J. L., Ferguson, R. C., Inman, K. F., et al. (1983). Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society of America Bulletin, 94, 222–235.

    Article  Google Scholar 

  • Dickinson, W. R., & Suczek, C. A. (1979). Plate tectonics and sandstone compositions. American Association of Petroleum Geologist, 63, 2164–2182.

    Google Scholar 

  • Dikshitulu, G. R., Pandey, B. K., Krishna, V., & Dhana, R. (1995). Rb/Sr systematics of granitoids of the central gneissic complex, Arunachal Himalaya: Implications on tectonics, stratigraphy, and source. Journal of the Geological Society of India, 45, 51–56.

    Google Scholar 

  • Ebadi, A., & Johannes, W. (1991). Beginning of melting and composition of first melts in the system Qz-Ab-Or-H2OCO2. Contributions to Mineralogy and Petrology, 106, 286–295.

    Article  Google Scholar 

  • France-Lanord, C., & LeFort, P. (1988). Crustal melting and granite genesis during the Himalayan collision orogenesis. Transactions of the Royal Society of Edinburg, 79, 183–195.

    Article  Google Scholar 

  • Gaschnig, R. M., Rudnick, R. L., McDonough, W. F., Kaufman, A. J., Hu, Z., & Gao, S. (2014). Onset of oxidative weathering of continents recorded in the geochemistry of ancient glacial diamictites. Earth and Planetary Science Letters, 408, 87–99.

    Article  Google Scholar 

  • Gaschnig, R. M., Rudnick, R. L., McDonough, W. F., Kaufman, A. J., Valley, J. W., Hu, Z., et al. (2016). Compositional evolution of the upper continental crust through time, as constrained by ancient glacial diamictites. Geochimica et Cosmochimica Acta, 186, 316–343.

    Article  Google Scholar 

  • Hofmann, A. (2005). The geochemistry of sedimentary rocks from the Fig Tree Group, Barberton greenstone belt: Implications for tectonic, hydrothermal and surface processes during mid-Archaean times. Precambrian Research, 143, 23–49.

    Article  Google Scholar 

  • Hofmann, A., Bolhar, R., Dirks, P., & Jelsma, H. (2003). The geochemistry of Archaean shales derived from a mafic volcanic sequence, Belingwe greenstone belt, Zimbabwe: Provenance, source area unroofing and submarine versus subaerial weathering. Geochimica et Cosmochimica Acta, 67, 421–440.

    Article  Google Scholar 

  • Holtz, F. (1989). Importance of melt fraction and source rock composition in crustal genesis-the example of two granitic suites of northern Portugal. Lithos, 24, 21–35.

    Article  Google Scholar 

  • Holtz, F., & Johannes, W. (1991). Genesis of peraluminous granites I. Experimental investigation of melt compositions at 3 and 5 kb and various H2O activities. Journal of Petrology, 32, 935–958.

    Article  Google Scholar 

  • Ingersoll, R. V., Bullard, T. F., Ford, R. L., Grimm, J. P., Pickle, J. D., & Sares, S. W. (1984). The effect of grain size on detrital modes: A test of the Gazzi-Dickinson point-counting method. Journal of Sedimentary Petrology, 54, 103–116.

    Google Scholar 

  • Kumar, G. (1997). Geology of Arunachal Pradesh. Geological Society of India, 217 p.

    Google Scholar 

  • Li, S., Gaschnig, R. M., & Rudnick, R. L. (2016). Insights intochemical weathering of the upper continental crust from the geochemistry of ancient glacial diamictites. Geochimica et Cosmochimica Acta, 176, 96–117.

    Article  Google Scholar 

  • McDonough, W. F., & Sun, S. S. (1995). The composition of the Earth. Chemical Geology, 120, 223–253.

    Article  Google Scholar 

  • McLennan, S. M., Hemming, S. R., McDaniel, D. K., & Hanson, G. N. (1993). Geochemical approaches to sedimentation, provenance and tectonics. Geological Society of America Special Paper, 284, 21–40.

    Article  Google Scholar 

  • McLennan, S. M., Hemming, S. R., Taylor, S. R., & Eriksson, K. A. (1995). Early Proterozoic crustal evolution: Geochemical and Nd-Pb isotopic evidence from metasedimentary rocks, southern North America. Geochimica et Cosmochimica Acta, 59, 1153–1177.

    Article  Google Scholar 

  • McLennan, S. M., Taylor, S. R., McCulloch, M. T., & Maynard, J. B. (1990). Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations. Geochimica et Cosmochimica Acta, 54, 2015–2050.

    Article  Google Scholar 

  • Mohan, M. R., Satyanarayanan, M., Santosh, M., Sylvester, P. J., Tubrett, M., & Lam, R. (2013). Neoarchean suprasubduction zone arc magmatism in southern India: Geochemistry, zircon U-Pb geochronology and Hf isotopes of the Sittampundi Anorthosite Complex. Gondwana Research, 23, 539–557.

    Article  Google Scholar 

  • Mondal, M. E. A., Goswami, J. N., Deomurari, M. P., & Sharma, K. K. (2002). Ion micro-probe 207Pb/206Pb ages of zircons from the Bundelkhand Massif, northern India: Implications for crustal evolution of the Bundelkhand-Aravalli supercontinent. Precambrian Research, 117, 85–100.

    Article  Google Scholar 

  • Naqvi, S. M., Raj, B. U., Rao, D. S., Manikyamba, C., Charan, S. N., Balaram, V., et al. (2002). Geology and geochemistry of arenite–quartzwacke from the Late Archaean Sandur schist belt—Implications for provenance and accretion processes. Precambrian Research, 114, 177–197.

    Article  Google Scholar 

  • Naqvi, S. M., & Rogers, J. J. W. (1987). Precambrian geology of India. Oxford: Oxford University Press Inc. 223p.

    Google Scholar 

  • Nesbitt, H. W., & Young, G. M. (1984). Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamics and kinetic consideration. Geochimica et Cosmochimica Acta, 48, 1223–1234.

    Article  Google Scholar 

  • Pearce, J. A., Harris, N. B. W., & Tindle, A. G. (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956–983.

    Article  Google Scholar 

  • Radhakrishna, T., Chandra, Ram, Srivastava, Akhilesh K., & Balasubramonian, G. (2013). Central/Eastern Indian Bundelkhand and Bastar cratons in the Palaeoproterozoic supercontinental reconstructions: A palaeomagnetic perspective. Precambrian Research, 226, 91–104.

    Article  Google Scholar 

  • Rashid, S. A. (2005). The Geochemistry of Mesoproterozoic clastic sedimentary rocks from the Rautgara formation, Kumaun Lesser Himalaya: Implications for provenance, mineralogical control and weathering. Current Science, 88, 1832–1836.

    Google Scholar 

  • Rashid, S. A., & Islam, N. (2009). Petrogenesis of a crustal-derived Paleoproterozoic Bomdila orthogneiss, Arunachal Pradesh, Northeast Lesser Himalaya. In S. Kumar (Ed.), Magmatism, tectonism and mineralization (pp. 92–101). New Delhi: Macmillan Publishers.

    Google Scholar 

  • Roser, B. P., & Korsch, R. J. (1986). Determination of tectonic setting of sandstone mudstone suites using SiO2 content and K2O/Na2O ratio. Journal of Geology, 94, 635–650.

    Article  Google Scholar 

  • Saha, D. (2013). Lesser Himalayan sequences in Eastern Himalaya and their deformation: Implications for Paleoproterozoic tectonic activity along the northern margin of India. Geoscience Frontiers, 4, 289–304.

    Article  Google Scholar 

  • Saini, N. K., Mukherjee, P. K., Rathi, M. S., Khanna, P. P., & Purohit, K. K. (1998). A new geochemical reference Sample of granite (DG-H) from Dalhousie, Himachal Himalaya. Journal of the Geological Society of India, 52, 603–606.

    Google Scholar 

  • Sharma, K. K. (1998). Evidence of Paleoproterozoic orogeny (deformation, metamorphism and magmatism) from Sutlej valley, NW Himalaya. Abstract volume, 13th HKT International Workshop, Peshawar. 31, pp. 181–182.

    Google Scholar 

  • Singh, S., & Chowdhury, P. K. (1990). An outline of the geological framework of the Arunachal Himalaya. Journal of Himalayan Geology, 1, 189–197.

    Google Scholar 

  • Srinivasan, V. (2001). Stratigraphy and structure of low grade metasedimentaries in eastern Bhutan and western Arunachal Pradesh. Himalayan Geology, 22, 83–98.

    Google Scholar 

  • Tang, M., Chen, K., & Rudnick, R. L. (2016). Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. Science, 351, 372–375.

    Article  Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution (p. 312). Oxford: Blackwell.

    Google Scholar 

  • Thakur, V. C. (1986). Tectonic zonation and tectonic framework of eastern Himalaya. Science de la terra, Memoir, 47, 347–366.

    Google Scholar 

  • Tuttle, O. F., & Bowen, N. L. (1958). Origin of granite in the light of experimental studies in the system NaAlSi3O8–KAlSi3O8–SiO2–H2O. Geological Society of America Memoirs, 74, 1–146.

    Google Scholar 

  • Winkler, H. C. F. (1979). Petrogenesis of metamorphic rocks (2nd ed.). Berlin: Springer.

    Google Scholar 

  • Wronkiewicz, D. J., & Condie, K. C. (1987). Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: Source-area weathering and provenance. Geochimica et Cosmochimica Acta, 51, 2401–2416.

    Article  Google Scholar 

  • Yin, A., Dubey, C. S., Kelty, T. K., Gehrels, G. E., Chou, C. Y., Grove, M., & Lovera, O. (2006). Structural evolution of the Arunachal Himalaya and implications for asymmetric development of the Himalayan orogen. Current Science, 90, 195–206.

    Google Scholar 

  • Yin, A., Dubey, C. S., Webb, A. A. G., Kelty, T. K., Grove, M., Gehrels, G. E., et al. (2010). Geologic correlation of the Himalayan orogen and Indian craton: Part 1. Structural geology, U-Pb zircon geochronology and tectonic evolution of the Shillong Plateau and its neighboring regions in NE India. Geological Society of America Bulletin, 122, 336–359.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Chairmen, Department of Geology, AMU, Aligarh and the Department of Earth Sciences, University of Kashmir, Srinagar for providing necessary facilities to carry out this work. Dr. V. Balaram and Dr. M. Satyanarayanan, NGRI, Hyderabad and Dr. N. K. Saini, WIHG, Dehradun are thankfully acknowledged for the geochemical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaik A. Rashid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rashid, S.A., Ahmad, S., Islam, N., Ganai, J.A. (2019). Precambrian Crustal History Unraveled from the Geochemical Studies of Post-Archean Rocks, Arunachal Pradesh, NE Lesser Himalaya. In: Mondal, M. (eds) Geological Evolution of the Precambrian Indian Shield. Society of Earth Scientists Series. Springer, Cham. https://doi.org/10.1007/978-3-319-89698-4_21

Download citation

Publish with us

Policies and ethics