Precambrian Crustal History Unraveled from the Geochemical Studies of Post-Archean Rocks, Arunachal Pradesh, NE Lesser Himalaya

  • Shaik A. RashidEmail author
  • Shamshad Ahmad
  • Naqeebul Islam
  • Javid A. Ganai
Part of the Society of Earth Scientists Series book series (SESS)


In an endeavor to document the composition and evolution of the Precambrian crust from the Northeast Lesser Himalaya from where much less information is available, Paleoproterozoic (1900  ±  100 Ma) metasedimentary (pelites and quartzites) rocks and granites from the Bomdila Group, Arunachal Pradesh were thoroughly examined. The integrated approach adopted in the study including field, petrography and major and trace element geochemistry indicate that the metasediments are felsic in composition and may have been derived from a granitic source, which may have undergone moderate to intense chemical weathering. The associated basement granites, on the basis of field and mineralogy, consists of two types of magmatic phases; porphyritic gneisses containing biotite and muscovite without tourmaline (referred as two-mica granites) and a weakly to non-foliated leucogranite having abundant tourmaline (referred as tourmaline granite). The geochemical signatures such as high peraluminosity (A/CNK > 1.1), S-type nature, normative corundum, presence of metasedimentary enclaves, enrichment in incompatible elements (Rb, Ba, K, Th, La) and depletion in high field strength elements (HFSE) and their respective ratios (such as Zr/Sc, Ti/Zr, Th/Sc) suggest that both suites are derived from a pelitic source, similar to that of the associated metasediments. This study further suggests the unroofing of felsic material which has supplied detritus to the Bomdila basin, thus establishing the felsic composition of the Precambrian crust in the region.


Precambrian Bomdila group Northeast lesser Himalaya Geochemistry Metasediments Granites 



We thank the Chairmen, Department of Geology, AMU, Aligarh and the Department of Earth Sciences, University of Kashmir, Srinagar for providing necessary facilities to carry out this work. Dr. V. Balaram and Dr. M. Satyanarayanan, NGRI, Hyderabad and Dr. N. K. Saini, WIHG, Dehradun are thankfully acknowledged for the geochemical analyses.


  1. Absar, N., & Sreenivas, B. (2015). Petrology and geochemistry of greywackes of the ~1.6 Ga Middle Aravalli Supergroup, northwest India: Evidence for active margin processes. International Geology Review, 57(2), 134–158.CrossRefGoogle Scholar
  2. Acharrya, S. K. (1994). The Cenozoic foreland basin and tectonics of the eastern sub-Himalaya: Problems and prospects. Himalayan Geology, 15, 3–21.Google Scholar
  3. Acharrya, S. K. (1998). Thrust tectonics and evolution of domes and the syntaxis in eastern Himalaya, India. Journal of Nepal Geological Society, 18, 1–17.Google Scholar
  4. Balaram, V., & Gnaneshwar Rao, T. (2003). Rapid determination of REEs and other trace elements in geological samples by microwave acid digestion and ICP-MS. Atomic Spectroscopy, 24, 206–212.Google Scholar
  5. Bernard, F., Moutou, P., & Pichavant, M. (1985). Phase relations of tourmaline leucogranites and the significance of tourmaline in silicic magmas. The Journal of Geology, 93, 271–291.CrossRefGoogle Scholar
  6. Bhatia, M. R., & Crook, K. A. W. (1986). Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92, 181–193.CrossRefGoogle Scholar
  7. Condie, K. C. (1993). Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chemical Geology, 104, 1–37.CrossRefGoogle Scholar
  8. Condie, K. C., & Kröner, A. (2013). The building blocks of continental crust: Evidence for a major change in the tectonic setting of continental growth at the end of the Archean. Gondwana Research, 23, 394–402.CrossRefGoogle Scholar
  9. Cox, R., Lower, D. R., & Cullers, R. L. (1995). The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the south-western United States. Geochimica et Cosmochimica Acta, 59, 2919–2940.CrossRefGoogle Scholar
  10. Das, A. K., Bakliwal, P. C., & Dhoundial, D. P. (1975). A brief outline of the geology of parts of Kameng District, NEFA (Vol. 24, pp. 15–27). Geological Society of India, Miscellaneous Publications.Google Scholar
  11. Dickinson, R., Beard, L. S., Brakenridge, G. R., Evjavec, J. L., Ferguson, R. C., Inman, K. F., et al. (1983). Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society of America Bulletin, 94, 222–235.CrossRefGoogle Scholar
  12. Dickinson, W. R., & Suczek, C. A. (1979). Plate tectonics and sandstone compositions. American Association of Petroleum Geologist, 63, 2164–2182.Google Scholar
  13. Dikshitulu, G. R., Pandey, B. K., Krishna, V., & Dhana, R. (1995). Rb/Sr systematics of granitoids of the central gneissic complex, Arunachal Himalaya: Implications on tectonics, stratigraphy, and source. Journal of the Geological Society of India, 45, 51–56.Google Scholar
  14. Ebadi, A., & Johannes, W. (1991). Beginning of melting and composition of first melts in the system Qz-Ab-Or-H2OCO2. Contributions to Mineralogy and Petrology, 106, 286–295.CrossRefGoogle Scholar
  15. France-Lanord, C., & LeFort, P. (1988). Crustal melting and granite genesis during the Himalayan collision orogenesis. Transactions of the Royal Society of Edinburg, 79, 183–195.CrossRefGoogle Scholar
  16. Gaschnig, R. M., Rudnick, R. L., McDonough, W. F., Kaufman, A. J., Hu, Z., & Gao, S. (2014). Onset of oxidative weathering of continents recorded in the geochemistry of ancient glacial diamictites. Earth and Planetary Science Letters, 408, 87–99.CrossRefGoogle Scholar
  17. Gaschnig, R. M., Rudnick, R. L., McDonough, W. F., Kaufman, A. J., Valley, J. W., Hu, Z., et al. (2016). Compositional evolution of the upper continental crust through time, as constrained by ancient glacial diamictites. Geochimica et Cosmochimica Acta, 186, 316–343.CrossRefGoogle Scholar
  18. Hofmann, A. (2005). The geochemistry of sedimentary rocks from the Fig Tree Group, Barberton greenstone belt: Implications for tectonic, hydrothermal and surface processes during mid-Archaean times. Precambrian Research, 143, 23–49.CrossRefGoogle Scholar
  19. Hofmann, A., Bolhar, R., Dirks, P., & Jelsma, H. (2003). The geochemistry of Archaean shales derived from a mafic volcanic sequence, Belingwe greenstone belt, Zimbabwe: Provenance, source area unroofing and submarine versus subaerial weathering. Geochimica et Cosmochimica Acta, 67, 421–440.CrossRefGoogle Scholar
  20. Holtz, F. (1989). Importance of melt fraction and source rock composition in crustal genesis-the example of two granitic suites of northern Portugal. Lithos, 24, 21–35.CrossRefGoogle Scholar
  21. Holtz, F., & Johannes, W. (1991). Genesis of peraluminous granites I. Experimental investigation of melt compositions at 3 and 5 kb and various H2O activities. Journal of Petrology, 32, 935–958.CrossRefGoogle Scholar
  22. Ingersoll, R. V., Bullard, T. F., Ford, R. L., Grimm, J. P., Pickle, J. D., & Sares, S. W. (1984). The effect of grain size on detrital modes: A test of the Gazzi-Dickinson point-counting method. Journal of Sedimentary Petrology, 54, 103–116.Google Scholar
  23. Kumar, G. (1997). Geology of Arunachal Pradesh. Geological Society of India, 217 p.Google Scholar
  24. Li, S., Gaschnig, R. M., & Rudnick, R. L. (2016). Insights intochemical weathering of the upper continental crust from the geochemistry of ancient glacial diamictites. Geochimica et Cosmochimica Acta, 176, 96–117.CrossRefGoogle Scholar
  25. McDonough, W. F., & Sun, S. S. (1995). The composition of the Earth. Chemical Geology, 120, 223–253.CrossRefGoogle Scholar
  26. McLennan, S. M., Hemming, S. R., McDaniel, D. K., & Hanson, G. N. (1993). Geochemical approaches to sedimentation, provenance and tectonics. Geological Society of America Special Paper, 284, 21–40.CrossRefGoogle Scholar
  27. McLennan, S. M., Hemming, S. R., Taylor, S. R., & Eriksson, K. A. (1995). Early Proterozoic crustal evolution: Geochemical and Nd-Pb isotopic evidence from metasedimentary rocks, southern North America. Geochimica et Cosmochimica Acta, 59, 1153–1177.CrossRefGoogle Scholar
  28. McLennan, S. M., Taylor, S. R., McCulloch, M. T., & Maynard, J. B. (1990). Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations. Geochimica et Cosmochimica Acta, 54, 2015–2050.CrossRefGoogle Scholar
  29. Mohan, M. R., Satyanarayanan, M., Santosh, M., Sylvester, P. J., Tubrett, M., & Lam, R. (2013). Neoarchean suprasubduction zone arc magmatism in southern India: Geochemistry, zircon U-Pb geochronology and Hf isotopes of the Sittampundi Anorthosite Complex. Gondwana Research, 23, 539–557.CrossRefGoogle Scholar
  30. Mondal, M. E. A., Goswami, J. N., Deomurari, M. P., & Sharma, K. K. (2002). Ion micro-probe 207Pb/206Pb ages of zircons from the Bundelkhand Massif, northern India: Implications for crustal evolution of the Bundelkhand-Aravalli supercontinent. Precambrian Research, 117, 85–100.CrossRefGoogle Scholar
  31. Naqvi, S. M., Raj, B. U., Rao, D. S., Manikyamba, C., Charan, S. N., Balaram, V., et al. (2002). Geology and geochemistry of arenite–quartzwacke from the Late Archaean Sandur schist belt—Implications for provenance and accretion processes. Precambrian Research, 114, 177–197.CrossRefGoogle Scholar
  32. Naqvi, S. M., & Rogers, J. J. W. (1987). Precambrian geology of India. Oxford: Oxford University Press Inc. 223p.Google Scholar
  33. Nesbitt, H. W., & Young, G. M. (1984). Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamics and kinetic consideration. Geochimica et Cosmochimica Acta, 48, 1223–1234.CrossRefGoogle Scholar
  34. Pearce, J. A., Harris, N. B. W., & Tindle, A. G. (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956–983.CrossRefGoogle Scholar
  35. Radhakrishna, T., Chandra, Ram, Srivastava, Akhilesh K., & Balasubramonian, G. (2013). Central/Eastern Indian Bundelkhand and Bastar cratons in the Palaeoproterozoic supercontinental reconstructions: A palaeomagnetic perspective. Precambrian Research, 226, 91–104.CrossRefGoogle Scholar
  36. Rashid, S. A. (2005). The Geochemistry of Mesoproterozoic clastic sedimentary rocks from the Rautgara formation, Kumaun Lesser Himalaya: Implications for provenance, mineralogical control and weathering. Current Science, 88, 1832–1836.Google Scholar
  37. Rashid, S. A., & Islam, N. (2009). Petrogenesis of a crustal-derived Paleoproterozoic Bomdila orthogneiss, Arunachal Pradesh, Northeast Lesser Himalaya. In S. Kumar (Ed.), Magmatism, tectonism and mineralization (pp. 92–101). New Delhi: Macmillan Publishers.Google Scholar
  38. Roser, B. P., & Korsch, R. J. (1986). Determination of tectonic setting of sandstone mudstone suites using SiO2 content and K2O/Na2O ratio. Journal of Geology, 94, 635–650.CrossRefGoogle Scholar
  39. Saha, D. (2013). Lesser Himalayan sequences in Eastern Himalaya and their deformation: Implications for Paleoproterozoic tectonic activity along the northern margin of India. Geoscience Frontiers, 4, 289–304.CrossRefGoogle Scholar
  40. Saini, N. K., Mukherjee, P. K., Rathi, M. S., Khanna, P. P., & Purohit, K. K. (1998). A new geochemical reference Sample of granite (DG-H) from Dalhousie, Himachal Himalaya. Journal of the Geological Society of India, 52, 603–606.Google Scholar
  41. Sharma, K. K. (1998). Evidence of Paleoproterozoic orogeny (deformation, metamorphism and magmatism) from Sutlej valley, NW Himalaya. Abstract volume, 13th HKT International Workshop, Peshawar. 31, pp. 181–182.Google Scholar
  42. Singh, S., & Chowdhury, P. K. (1990). An outline of the geological framework of the Arunachal Himalaya. Journal of Himalayan Geology, 1, 189–197.Google Scholar
  43. Srinivasan, V. (2001). Stratigraphy and structure of low grade metasedimentaries in eastern Bhutan and western Arunachal Pradesh. Himalayan Geology, 22, 83–98.Google Scholar
  44. Tang, M., Chen, K., & Rudnick, R. L. (2016). Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. Science, 351, 372–375.CrossRefGoogle Scholar
  45. Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution (p. 312). Oxford: Blackwell.Google Scholar
  46. Thakur, V. C. (1986). Tectonic zonation and tectonic framework of eastern Himalaya. Science de la terra, Memoir, 47, 347–366.Google Scholar
  47. Tuttle, O. F., & Bowen, N. L. (1958). Origin of granite in the light of experimental studies in the system NaAlSi3O8–KAlSi3O8–SiO2–H2O. Geological Society of America Memoirs, 74, 1–146.Google Scholar
  48. Winkler, H. C. F. (1979). Petrogenesis of metamorphic rocks (2nd ed.). Berlin: Springer.Google Scholar
  49. Wronkiewicz, D. J., & Condie, K. C. (1987). Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: Source-area weathering and provenance. Geochimica et Cosmochimica Acta, 51, 2401–2416.CrossRefGoogle Scholar
  50. Yin, A., Dubey, C. S., Kelty, T. K., Gehrels, G. E., Chou, C. Y., Grove, M., & Lovera, O. (2006). Structural evolution of the Arunachal Himalaya and implications for asymmetric development of the Himalayan orogen. Current Science, 90, 195–206. Google Scholar
  51. Yin, A., Dubey, C. S., Webb, A. A. G., Kelty, T. K., Grove, M., Gehrels, G. E., et al. (2010). Geologic correlation of the Himalayan orogen and Indian craton: Part 1. Structural geology, U-Pb zircon geochronology and tectonic evolution of the Shillong Plateau and its neighboring regions in NE India. Geological Society of America Bulletin, 122, 336–359.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Shaik A. Rashid
    • 1
    Email author
  • Shamshad Ahmad
    • 1
  • Naqeebul Islam
    • 1
  • Javid A. Ganai
    • 2
  1. 1.Department of GeologyAligarh Muslim UniversityAligarhIndia
  2. 2.Department of Earth SciencesUniversity of KashmirSrinagarIndia

Personalised recommendations