Petrography and Diagenetic Evolution of the Proterozoic Kaimur Group Sandstones, Son Valley, India: Implication Towards Reservoir Quality

  • M. A. QuasimEmail author
  • Sumit K. Ghosh
  • A. H. M. Ahmad
Part of the Society of Earth Scientists Series book series (SESS)


In Central India the Upper Kaimur Subgroup of Vindhyan Supergroup, primarily consists of three lithounits-Dhandraul Sandstone, Scarp Sandstone and Bijaigarh Shale. The framework grains, mineralogy, matrix, pore properties and cements were identified. Average framework composition of the texturally super-mature Dhandraul Sandstone is Qt99 F0.1L0.8 and texturally less mature, Scarp Sandstone is Qt99 F0.2L0.8. The important diagenetic components identified based on the framework grain–cement relationships are mechanical compaction, cements, authigenic clays and dissolution and alteration of unstable clastic grains and tectonically induced grain fracturing. The early to intermediate stage of the diagnostic realm e.g., mechanical compaction, cementation, dissolution, and authigenesis of clays (dominantly kaolinite, mixed illite-smectite and minor illite). Mixed illite-smectite and illite occur as pore-filling and or lining during authigenic phases. Kaolinite and silica (quartz) overgrowth occur as pore-filling and lining cements. Compaction played an added role than the cementation in modifying the primary porosity. Cementation drastically reduced the porosity and permeability. Kaolinite fills pore spaces and caused reduction in the porosity and permeability of the sandstone. Secondary porosity development occurred due to partial to complete dissolution of feldspar. The diagenetic signatures observed in the Upper Kaimur Subgroup Sandstones are suggestive of intermediate burial (2–3 km depth). The reservoir quality of the studied sandstones is reduced by authigenic clay minerals (kaolinite, mixed illite-smectite and minor illite), cementations, and on other hand, it is increased by alteration and dissolution of unstable grains.


Petrography Diagenetic evolution Upper Kaimur Subgroup Sandstones Son Valley 



The authors gratefully thank the Chairman, Department of Geology, Aligarh Muslim University, Aligarh for providing the necessary research facilities. The financial assistance received by the first author in the form of Junior Research Fellowship from the University under University Grant Commission, BSR fellowship scheme, New Delhi is acknowledged. We are grateful to Dr. Shahid Husain (Department of Physics, AMU, Aligarh) for giving permission for XRD analysis. We thank to the Director of USIF, AMU, Aligarh, for supporting SEM analysis.


  1. Ajdukiewicz, J. M., & Lander, R. H. (2010). Sandstone reservoir quality prediction: The state of the art. The American Association of Petroleum Geologists, 94, 1083–1091.CrossRefGoogle Scholar
  2. Anbarasu, K. (2001). Acritarch from Mesoproterozoic Chitrakut Formation, Semri Group, Chitrakoot area, Central India. Journal of the Geological Society of India, 57, 179–183.Google Scholar
  3. Auden, J. B. (1933). Vindhyan sedimentation in the Son valley, Mirzapur district. Mem. Geol. Sur. India, 62, 141–250.Google Scholar
  4. Banerjee, I. (1964). On some broader aspects of the Vindhyan sedimentation. In Proceedings of International Geological Congress (Vol. 15, pp. 189– 204), 22nd session, New Delhi.Google Scholar
  5. Banerjee, I. (1974). Barrier coastline sedimentation model and the Vindhyan example. Quarterly Journal of Geological Mining Metallurgical Society of India (Golden Jubilee), 46, 101–127.Google Scholar
  6. Bertier, P., Swennen, R., Largrou, D., Laenen, B., & Kemps, R. (2008). Palaeoclimate controlled diagenesis of the Westphalian C&D fluvial sandstones in the Campine Basin (north–west Belgium). Sedimentology, 55, 1375–1417.CrossRefGoogle Scholar
  7. Bhattacharya, A., & Morad, S. (1993). Proterozoic braided ephemeral fluvial deposits: An example from the Dhandraul Sandstone Formation of the Kaimur Group, Son Valley, Central India. Sedimentary Geology, 84, 101–114.CrossRefGoogle Scholar
  8. Bjørlykke, K. (1984). Formation of secondary porosity: How important is it? Clastic diagenesis. In R. Surdam & R. McDonald DA (Eds.), Association of petroleum geologists memoir (Vol. 37, pp. 77–286). The American Association of Petroleum Geologists, Tulsa, Oklahoma, Vol. 47.Google Scholar
  9. Bjørlykke, K., Nedkvitne, T., Ramm, M., & Saigal, G. (1992). Diagenetic processes in the Berent Group (Middle Jurassic) reservoirs of the North Sea. An overview. In A. C. Morton, R. S. Haszeldine, M. R. Giles, & S. Brown (Eds.), Geology of Brent Group (Vol. 61, pp. 263–287). Geological Society, London.CrossRefGoogle Scholar
  10. Boles, J. R., & Franks, S. G. (1979). Clay diagenesis in Wilcox sandstones of southwest Texas: Implications of smectite diagenesis on sandstone cementation. Journal of Sedimentary Petrology, 49, 55–70.Google Scholar
  11. Bose, P. K., Sarkar, S., Chakraborty, S., & Banerjee, S. (2001). Overview of Meso- to Neoproterozoie evolution of the Vindhyan basin, Central India. Sedimentary Geology, 142, 395–419.CrossRefGoogle Scholar
  12. Carvalho, M. V. F., De Ros, L. F., & Gomes, N. S. (1995). Carbonate cementation patterns and diagenetic reservoir facies in the Campos Basin Cretaceous turbidites, offshore eastern Brazil. Marine and Petroleum Geology, 12, 741–758.CrossRefGoogle Scholar
  13. Chakrabarti, R., Basu, A. R., & Chakrabarti, A. (2007). Trace element and Nd-isotopic evidence for sediment sources in the mid-Proterozoic Vindhyan Basin, central India. Precambrian Research, 159, 260–274.CrossRefGoogle Scholar
  14. Chakraborty, C. (1993). Morphology, internal structure and mechanics of small longitudinal (seif) dunes in an eolian horizon of the Proterozoic Dhandraul Quartzites, India. Sedimentology, 40, 79–85.CrossRefGoogle Scholar
  15. Chakraborty, C. (1996). Sedimentary records of erg development over a braidplain: Proterozoic Dhandraul Sandstone. Geological Society of India Memoir, 36, 77–99.Google Scholar
  16. Chakraborty, C., & Bose, P. K. (1992). Rhythmic shelf storm beds: Proterozoic Kaimur Formation, India. Sedimentary Geology, 77, 249–268.CrossRefGoogle Scholar
  17. Cozzi, A., Rea, G., & Craig, J. (2012). From global geology to hydrocarbon exploration: Pakistan and Oman Ediacaran-Early Cambrian petroleum plays of India. In G. Bhat, J. Craig, J. W. Thurow, B. Thusu, & A. Cozzi (Eds.), Geology and hydrocarbon potential of Neoproterozoic–Cambrian Basins in Asia (Vol. 366, pp. 131–162). Geological Society London, Special Publications.Google Scholar
  18. Dapples, E. C. (1979). Diagenesis of sandstone. In G. Larsen & G. V. Chilingarian (Eds.), Diagenesis in sediments and sedimentary rocks. Developments in sedimentology (vol. 25, pp. 31–97). The Netherlands: Elsevier.Google Scholar
  19. Dickinson, W. R. (1985). Interpreting provenance relations from detrital modes of sandstones. In Zuffa, G. G. (Ed.) Provenance of arenites (pp. 331–361). Dordrecht: D. Reidel.CrossRefGoogle Scholar
  20. Dickinson, W. R., Beard, L. S., Brakenride, G. R., Erjavec, J. L., Ferguson, R. C., Inman, K. F., et al. (1983). Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society of America Bulletin, 94, 222–235.CrossRefGoogle Scholar
  21. Ehrenberg, S. N. (1989). Assessing the relative importance of compaction processes and cementation to reduction of porosity in sandstones: Discussion; compaction and porosity evolution of Pliocene sandstones, Ventura Basin, California: discussion. American Association of Petroleum Geologists Bulletin, 73(10), 1274–1276.Google Scholar
  22. El-Ghali, M. A., Tajori, K. G., & Mansurbeg, H. (2006). The influence of transgression and regression on the spatial and temporal distribution of diagenetic kaolin in the Upper Ordovician glaciogenic sandstones within a sequence stratigraphic framework, Murzuq Basin, SW Libya. Journal of Geochemical Exploration, 89, 87–91.CrossRefGoogle Scholar
  23. Folk, R. L. (1980). Petrology of sedimentary rocks. Texas: Hemphill Publishing Company. 184p.Google Scholar
  24. Galehouse, J. S. (1971). Sedimentation analysis. In R. E. Carver (Ed.), Procedures in sedimentary petrology (pp. 69–94). New York: Wiley.Google Scholar
  25. Giles, M. R., Stevenson, S., Martin, S. V., & Cannon, C. (1992). The reservoir properties and diagenesis of the Berent Group: A regional perspective. In A. Morton, R. Haszeldine, M. Giles, & S. Brown (Eds.). (Vol. 61, pp. 289–327). Geology of Brent Group. Geological Society of London.CrossRefGoogle Scholar
  26. Gopalan, K., Kumar, S., & Vijayagopala, B. (2013). Depositional history of the Upper Vindhyan succession, central India: Time constraints from Pb-Pb isochron ages of its carbonate components. Precambrian Research, 233, 108–117.CrossRefGoogle Scholar
  27. Hassouta, L., Buatier, M. D., Potdevin, J. L., & Liewig, N. (1999). Clay diagenesis in the sandstone reservoir of the Ellon field (Alwyn, North Sea) Clays. Clay Minerals, 47, 269–285.CrossRefGoogle Scholar
  28. Imam, B. (1986). Scanning electron microscopy study of the quartz overgrowths within Neogene sandstones of Bengal Basin, Bangladesh. Journal of the Geological Society of India, 28, 407–413.Google Scholar
  29. Imam, M. B., & Shaw, H. F. (1987). Diagenetic controls on the reservoir properties of gas bearing Neogene Surma Group sandstones in the Bengal Basin, Bangladesh. Marine and Petroleum Geology, 4, 103–110.CrossRefGoogle Scholar
  30. Islam, M. A. (2009). Diagenesis and reservoir quality of Bhuban sandstones (Neogene), Titas Gas Field, Bengal Basin, Bangladesh. Journal of Asian Earth Sciences, 35, 89–100.CrossRefGoogle Scholar
  31. Jokhan, R. (2003). Frontier basins: A major thrust area in Indian energy scenario, “new challenges in hydrocarbon research and exploration”. CSIR Diamond Jubilee Workshop III, NGRI, Hyderabad.Google Scholar
  32. Jokhan, R. (2012). Neoproterozoic successions in peninsular India and their hydrocarbon prospectivity. In G. Bhat, J. Craig, J. W. Thurow, B. Thusu, & A. Cozzi (Eds.), Geology and hydrocarbon potential of Neoproterozoic-Cambrian Basins in Asia (Vol. 366, pp. 59–73). Geological Society of London, Special Publications.Google Scholar
  33. Jokhan, R., Shukla, S. N., Pramanik, A. G., Verma, B. K., Chandra, G., & Murthy, M. S. N. (1996). Recent investigation in Vindhyan Basin: Implications for the Basin tectonics. Memoirs Geological Society of India, 36, 267–286.Google Scholar
  34. Khalifa, M. A., & Catuneanu, O. (2008). Sedimentology of the fluvial and fluvio-marine facies of the Bahariya Formation (Early Cenomanian), Bahariya Oasis, Western Desert, Egypt. Journal of African Earth Sciences, 51, 89–103.CrossRefGoogle Scholar
  35. Kumar, S. (1976). Stromatolites from the Vindhyan rocks of the Son Valley- Maihar area, districts Mirzapur (U.P.) and Satna (M.P.). Journal of the Palaeontological Society of India, 18, 13–21.Google Scholar
  36. Kumar, S. (1980). Stromatolites and Indian biostratigraphy: A review. Journal of the Palaeontological Society of India, 24, 166–183.Google Scholar
  37. Kumar, S. (1999). Siliceous sponge spicule-like forms from the Neo-Proterozoic Bhander Limestone, Maihar area, Madhya Pradesh. Journal of the Palaeontological Society of India, 44, 141–148.Google Scholar
  38. Kumar, S. (2001). Mesoproterozoic megafossil Chuaria-Tawuia association may represent parts of a multicellular plant, Vindhyan Supergroup, Central India. Precambrian Research, 106, 187–211.CrossRefGoogle Scholar
  39. Kumar, S. (2009). Controversy concerning ‘Cambrian’ fossils from the Vindhyan sediments: A re-assessment. Journal of the Palaeontological Society of India, 54, 115–117.Google Scholar
  40. Kumar, S., & Pandey, S. K. (2008). Arumberia and associated fossils from the Neo-Proterozoic Maihar Sandstone, Vindhyan Supergroup, Central India. Journal of the Palaeontological Society of India, 53(1), 83–97.Google Scholar
  41. Kumar, S., Sharma, S. D., Sreenivas, B., Dayal, A. M., Rao, M. N., Dubey, N., et al. (2002). Carbon, oxygen and strontium isotope geochemistry of Proterozoic carbonate rocks of the Vindhyan Basin, Central India. Precambrian Research, 113, 43–63.CrossRefGoogle Scholar
  42. Kumar, S., & Srivastava, P. (1992). Discovery of microfossils from the nonstromatolitic middle Proterozoic Vindhyan Chert, Chitrakut area, U.P. Journal Geological Society of India, 38, 511–515.Google Scholar
  43. Kumar, S., & Srivastava, P. (1995). Microfossils from the Kheinjua formation, Mesoproterozoic Semri group, Newari area, Central India. Precambrian Research, 74, 91–117.CrossRefGoogle Scholar
  44. Kumar, S., Schidlowski, M., & Joachimski, M. M. (2005). Carbon isotope stratigraphy of the Palaeo-Neoproterozoic Vindhyan Supergroup, Central India: Implications for basin evolution and intrabasinal correlation. Journal of the Palaeontological Society of India, 50(1), 65–81.Google Scholar
  45. Lundegard, F. D. (1992). Sandstone porosity loss a big picture view of the importance of compaction. Journal of Sedimentary Petrography, 62, 250–260.CrossRefGoogle Scholar
  46. Malone, S. J., Meert, J. G., Banerjee, D. M., Pandit, M. K., Tamrat, E., Kamenov, G. D., et al. (2008). Paleomagnetism and detrital zircon geochronology of the Upper Vindhyan Sequence, Son Valley and Rajasthan, India: A ca. 1000 Ma closure age for the Purana Basins? Precambrian Research, 164, 137–159.CrossRefGoogle Scholar
  47. Mansurbeg, H., Morad, S., Plink-Björklund, P., El-Ghali, M. A. K., Caja, M. A., & Marfil, R. (2013). Diagenetic alterations related to falling stage and lowstand systems tracts of shelf, slope and basin floor sandstones (Eocene Central Basin, Spitsbergen). In S. Morad, M. Ketzer, & L. F. De Ros (Eds.), Linking diagenesis to sequence stratigraphy (Vol. 45, pp. 353–378). International Association of Sedimentologists, Special Publications.CrossRefGoogle Scholar
  48. Mathisen, M. E. (1984). Diagenesis of plio-pleistocene non-marine sandstones, Cagayan Basin, Philippines, early development of secondary porosity in volcanic sandstones. In R. Surdam & D. A. McDonald (Eds.), Clastic diagenesis (Vol. 37, pp. 177–193). Tulsa, Oklahoma: Association of Petroleum Geologists Memoir, American Association of Petroleum Geologists.Google Scholar
  49. Mathur, S. M., & Srivastava, J. P. (1962). Algal structures from Fawn Limestone, Semri Series (Lower Vindhyan) in the Mirzapur district. UP Records of Geological Survey of India, 87, 819–822.Google Scholar
  50. McBride, E. F. (1985). Diagenetic processes that affect provenance determinations in sandstone. In G. G. Zuffa (Ed.), Provenance of arenite. Dordrecht, The Netherlands: Reidel.Google Scholar
  51. Meenal, M., & Shinjana, S. (2008). Geochemistry and origin of proterozoic porcellanitic shales from Chopan, Vindhyan basin, India. Indian Journal of Geology, 80(1–4), 157–171.Google Scholar
  52. Meenal, M., & Shinjana, S. (2010). Geochemical signatures of Mesoproterozoic siliciclastic rocks of Kaimur Group, Vindhyan Supergroup, Central India. Chinese Journal of Geochemistry, 29(1), 21–31.CrossRefGoogle Scholar
  53. Misra, R. C., & Awasthi, N. (1962). Sedimentary markings and other structures in the rocks of the Vindhyan Formations of the Son Valley and Maihar-Rewa area, India. Journal of Sedimentary Petrology, 32, 764–775.Google Scholar
  54. Misra, R. C., Singh, A. K., & Singh, I. B. (1972). Wrinkle marks from lower Rewa Formation (Upper Vindhyan) of Manikpur area, Banda district, Uttar Pradesh, India. Journal of Geological Society of India, 13, 286–288.Google Scholar
  55. Mondal, M. E. A., Goswami, J. N., Deomurari, M. P., & Sharma, K. K. (2002). Ionprobe 207Pb/206Pb ages of zircons from the Bundelkhand massif, northern India: Implications for crustal evolution of the Bundelkhand–Aravalli protocontinent. Precambrian Research, 117, 85–100.CrossRefGoogle Scholar
  56. Mondol, N. H., Bjørlykke, K., Jahren, J., & Høeg, K. (2007). Experimental mechanical compaction of clay mineral aggregates—Changes in physical properties of mudstones during burial. Marine and Petroleum Geology, 24, 289–311.CrossRefGoogle Scholar
  57. Morad, S., Bhattacharya, A., & Al-Aasam, L. S. (1991). Diagenesis of quartz in Late Proterozoic Kaimur Sandstones, Son Valley, India. Sedimentary Geology, 73, 209–225.CrossRefGoogle Scholar
  58. Morad, S., Ketzer, J. M., & De Ros, L. F. (2000). Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: Implications for mass transfer in sedimentary basins. Sedimentology, 47, 95–120.CrossRefGoogle Scholar
  59. Moraes, M. A. S., & De Ros, L. F. (1990). Infiltrated clays in fluvial Jurassic sandstones of Recôncavo Basin, Northeastern Brazil. Journal of Sedimentary Petrology, 60, 809–819.Google Scholar
  60. Oelkers, E. H., Bjørkum, P. A., & Murphy, W. M. (1996). The mechanism of porosity reduction, stylolites development and quartz cementation in North Sea sandstones. In Y. K. Kharaka & A. S. Maest (Eds.), Proceedings of 7th International Symposium on Water-Rock Interaction, pp. 1183–1186.Google Scholar
  61. Paikaray, S., Banerjee, S., & Mukherji, S. (2008). Geochemistry of shales from the Paleoproterozoic to Neoproterozoic Vindhyan Supergroup, implications on provenance, tectonics and paleoweathering. Journal of Asian Earth Sciences, 32, 34–48.CrossRefGoogle Scholar
  62. Paxton, S. T., Szabo, J. O., Ajdukiewicz, J. M., & Klimentidis, R. E. (2002). Construction of an intergranular volume compaction curve for evaluating and predicting compaction and porosity loss in rigid-grain sandstone reservoirs. American Association of Petroleum Geologists Bulletin, 86, 2047–2067.Google Scholar
  63. Pittman, E. D., & Larese, R. E. (1991). Compaction of lithic sands: Experimental results and applications. American Association of Petroleum Geologists Bulletin, 75, 1279–1299.Google Scholar
  64. Prakash, R., & Dalela, I. K. (1982). Stratigraphy of the Vindhyan in Uttar Pradesh: A brief review. Lucknow: U. P. State Mineral Development Corporation.Google Scholar
  65. Quasim, M. A., Ahmad, A. H. M. & Ghosh, S. K. (2017a). Depositional environment and tectono-provenance of Upper Kaimur Group sandstones, Son Valley, Central India. Arabian Journal of Geosciences, 10(4).
  66. Quasim, M. A., Khan, I. and Ahmad, A. H. M. (2017b). Integrated Petrographic, Mineralogical, and Geochemical Study of the Upper Kaimur Group of Rocks, Son Valley, India: Implications for Provenance, Source Area Weathering and Tectonic Setting. Journal of Geological Society of India, 90, 467–484.CrossRefGoogle Scholar
  67. Raha, P. K., & Sastry, M. V. A. (1982). Stromatolites and Precambrian stratigraphy in India. Precambrian Research, 18, 293–318.CrossRefGoogle Scholar
  68. Ray, J. S. (2006). Age of the Vindhyan Supergroup: A review of recent findings. Journal of Earth System Science, 115, 149–160.CrossRefGoogle Scholar
  69. Rossi, C., & Alaminos, A. (2014). Evaluating the mechanical compaction of quartz arenites: The importance of sorting (Llanos foreland basin, Colombia). Marine and Petroleum Geology, 56, 222–238.CrossRefGoogle Scholar
  70. Roy, A. B. (1988). Stratigraphic and tectonic framework of the Aravalli Mountain range. In A. B. Roy (Ed.), Precambrian of the Aravalli Mountain (pp. 3–31). Memoirs Geological Society of India: Rajasthan, India.Google Scholar
  71. Ruppel, S. C., & Hovorka, S. D. (1995). Controls on reservoir development in Devonian Chert: Permian Basin, Texas. American Association of Petroleum Geologists Bulletin, 79(12), 1757–1785.Google Scholar
  72. Sarkar, S. (1981). Ripple marks in intertidal Lower Bhander sandstone (Late Proterozoic), Central India: A morphological analysis. Sedimentary Geology, 29, 241–282.CrossRefGoogle Scholar
  73. Sastry, M. V. A., & Moitra, A. K. (1984). Vindhyan stratigraphy—A review. Memoirs of the Geological Survey of India, 116, 109–148.Google Scholar
  74. Schmidt, V., & McDonald, D. A. (1979). Texture and recognition of secondary porosity in sandstones. In P. A. Scholle & P. R. Schluger (Eds.), Aspects of diagenesis (Vol. 26, pp. 209–225). Society of Economic Paleontologists and Mineralogists, Special Publications.CrossRefGoogle Scholar
  75. Seibert, R. M., Moncure, G. K., & Lahann, R. W. (1984). A theory of framework grain dissolution in sandstones. In R. Surdam & D. A. McDonald (Eds.), Clastic diagenesis (Vol. 37, pp. 136–175). Tulsa, Oklahoma: Association of Petroleum Geologists Memoir, American Association of Petroleum Geologists.Google Scholar
  76. Singh, I. B. (1973). Depositional environment of the Vindhyan sediments in Son Valley area. Recent Research in Geology, 1, 146–152.Google Scholar
  77. Singh, I. B. (1976). Depositional environments of the Upper Vindhyan sediments in the Satna-Maihar area, Madhya Pradesh, and its bearing on the evolution of the Vindhyan sedimentary basins. Journal of the Palaeontological Society of India, 19, 48–70.Google Scholar
  78. Smosna, R. (1989). Compaction law for Cretaceous sandstones of Alaska’s North slope. Journal of Sedimentary Petrology, 59, 572–584.Google Scholar
  79. Smosna, R., & Bruner, K. (1997). Depositional controls over porosity development in lithic sandstones of the Appalachian Basin: Reducing exploration risk. In J. A. Kupecz, J. Gluyas, & S. Bloch (Eds.), Reservoir quality prediction in sandstones and carbonates (Vol. 69, pp. 249–265). The American Association of Petroleum Geologists Memoirs.Google Scholar
  80. Soni, M. K., Chakraborty, S., & Jain, S. K. (1987). Vindhyan supergroup—A review. In Purana basins of India. Journal of the Geological Society of India, 6, 87–138.Google Scholar
  81. Surdam, R. C., Boese, S. W., & Crossey, L. J. (1984). The chemistry of the secondary porosity. In R. Surdam & D. A. McDonald (Eds.), Clastic diagenesis (Vol. 37, pp. 127–149). Tulsa, Oklahoma: Association of Petroleum Geologists Memoir, The American Association of Petroleum Geologists Memoirs.Google Scholar
  82. Taylor, J. M. (1950). Pore space reduction in sandstone. American Association of Petroleum Geologists Bulletin, 34, 710–716.Google Scholar
  83. Taylor, T. R., Giles, M. R., Hathon, L. A., Diggs, T. N., Braunsdorf, N. R., Birbiglia, G. V., et al. (2010). Sandstone diagenesis and reservoir quality prediction: Models, myths, and reality. American Association of Petroleum Geologists Bulletin, 94, 1093–1132.CrossRefGoogle Scholar
  84. Tucker, M. E. (2003). Sedimentary petrology (3rd ed.). London: Blackwell Scientific Publication Ltd. 262p.Google Scholar
  85. Valdiya, K. S. (1989). Precambrian stromatolite biostratigraphy of India—A review. Himalayan Geology, 13, 181–214.Google Scholar
  86. Vardhan, C. V., Paniker, S. K., & Kumar, B. (2007). Comparison of Proterozoic basins of India with similar basins of the world: Implications for hydrocarbon resource prospects. In D. Liang, D. Wang, & Z. Li (Eds.), Petroleum geochemistry and exploration in the Afro-Asian Region (pp. 69–74). London: Taylor and Francis Group.Google Scholar
  87. Verma, R. K. (1991). Geodynamics of the Indian Peninsula and the Indian Plate Margin. Oxford: IBH. 357p.Google Scholar
  88. Worden, R., & Morad, S. (2000). Quartz cement in oil field sandstones: A review of the critical problems. In R. H. Worden & S. Morad (Eds.), Quartz cementation in sandstones (Vol. 29, pp. 1–20). International Association of Sedimentologists, Special Publication.Google Scholar
  89. Worden, R. H., & Burley, S. (2003). Sandstone diagenesis: The evolution of sand to stone. In S. Burley & R. Worden (Eds.), Sandstone diagenesis: Recent to ancient (Vol. 4, pp. 3–44). International Association of Sedimentologists, Reprint Series.Google Scholar
  90. Worden, R. H., & Morad, S. (2003). Clay minerals in sandstones: Controls on formation, distribution and evolution. In R. H. Worden & S. Morad (Eds.), Clay minerals cement in sandstones (Vol. 34, pp. 3–41). International Association of Sedimentologists Special Publication.Google Scholar
  91. Worden, R. H., Myall, M. & Evans, I. J. (2000). The effect of ductile-lithic sand grains and quartz cement on porosity and permeability in Oligocene and Miocene clastics, south China Sea: prediction of reservoir quality. American Association of Petroleum Geologists Bulletin, 84, 345–359.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • M. A. Quasim
    • 1
    Email author
  • Sumit K. Ghosh
    • 2
    • 3
  • A. H. M. Ahmad
    • 1
  1. 1.Department of GeologyAligarh Muslim UniversityAligarhIndia
  2. 2.Formerly Wadia Institute of Himalayan Geology (WIHG)DehradunIndia
  3. 3.DehradunIndia

Personalised recommendations